Mareen Hoppe ${ }^{1}$, Frank Siegert ${ }^{1}$, Marek Schönherr ${ }^{2}$
${ }^{1}$ Institute of Nuclear and Particle Physics, Technische Universität Dresden
2 Institute for Particle Physics Phenomenology, University of Durham

Implementation of polarized cross sections for vector bosons in Sherpa

MCnet-Meeting Graz, September 23, 2022

Introduction: Motivation \& Task

Why polarization?

- longitudinal polarization: consequence of non-vanishing boson mass generated by electroweak symmetry breaking (EWSB) mechanism
\rightarrow without Higgs-Boson: Unitarity-Breaking $\sigma\left(\mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}} \rightarrow \mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}\right) \propto \mathrm{E}_{\mathrm{cm}}^{2}$
\rightarrow sensitive to:

Current status

- only a few generators are available (Madgraph, Phantom, Whizard) which provide event simulation with polarization information
- Sherpa can not simulate polarized cross sections yet

Definition of polarization for vector bosons

Definition of vector boson polarization

- free vector-boson field described by Proca equation:

$$
\square V^{\alpha}(x)+m_{V}^{2} V^{\alpha}(x)=0
$$

- solution:

$$
V^{\alpha}=\int \frac{d^{3} q}{(2 \pi)^{3} 2 q_{0}} \sum_{\lambda} \varepsilon^{\alpha}(q, \lambda) \hat{a}(q, \lambda) e^{-i q x}+\varepsilon^{* \alpha}(q, \lambda) \hat{b}^{\dagger}(q, \lambda) e^{i q x}
$$

Polarization vectors

common definition in helicity basis:
polarization vectors $=$ eigenvectors of helicity operator

$$
h=\frac{\vec{p} \cdot S}{|\vec{p}|}
$$

possible eigenvalues:
$>h= \pm 1$: transverse polarization
$>\mathrm{h}=0$: longitudinal polarization

- interacting theory: external vector bosons described by polarization vector

Polarization of intermediate particles

- Problem: short living vector bosons not directly measurable
- Propagator terms: no dependence on polarization vectors

$$
\frac{i\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{m_{V} V^{2}}\right)}{q^{2}-m_{V}^{2}+i \Gamma_{V} m_{V}}
$$

\checkmark completeness relation:

$$
\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{m_{V}^{2}}\right)=\sum_{\lambda=1}^{4} \varepsilon^{\mu}(q, \lambda) \varepsilon^{* \nu}(q, \lambda)
$$

But: unphysical fourth polarization $\Rightarrow \Rightarrow \Rightarrow$ vanishes for on shell particles

- definition of polarization only possible, if matrix element factorizes in production \& decay

Example: Single $W+j$ production and decay
$\mathcal{M}=\mathcal{M}_{\mu}^{\text {prod }}\left(\frac{i\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{m_{W}^{2}}\right)}{q^{2}-m_{W}^{2}+i \Gamma_{W} m_{W}}\right) \mathcal{M}_{\nu}^{\text {decay }}$

\rightarrow also necessary for interpretation \& separation of polarization

Polarization of intermediate particles - difficulties

Non-resonant contributions

- no factorization possible
- necessary for gauge invariance
\checkmark suitable approximations:
- double-pole approximation (DPA)
- Sherpa: narrow-width approximation (NWA)

example: ssWW-scattering

Interference between different polarizations

- off diagonal terms in matrix element tensor: matrix element \& its complex conjugate have different helicities
- reason: helicity sum in matrix element
$\checkmark \quad$ zero for absence of lepton cuts
$\checkmark \quad$ analysis should be designed such that interference are small
example: $W+j$ production

$\mathcal{M}=\frac{\pi}{\Gamma_{\mathrm{W}} m_{\mathrm{W}}} \sum_{\lambda=1}^{3} \mathcal{M}_{\mu}^{\text {prod }} \varepsilon_{\lambda}^{* \mu} \varepsilon_{\lambda}^{\nu} \mathcal{M}_{\nu}^{\text {decay }}=\frac{\pi}{\Gamma_{W} m_{W}} \sum_{\lambda=1}^{3} \mathcal{M}_{\lambda}^{\mathcal{P}} \mathcal{M}_{\lambda}^{\mathcal{D}}:=\sum_{\lambda=1}^{3} \mathcal{M}_{\lambda}^{\mathcal{F}}$
$\sigma \propto|\mathcal{M}|^{2}=\sum_{\lambda}\left|\mathcal{M}_{\lambda}^{\mathcal{F}}\right|^{2}+\sum_{\lambda, \lambda^{\prime}} \mathcal{M}_{\lambda}^{\mathcal{F} *} \mathcal{M}_{\lambda^{\prime}}^{\mathcal{F}}$
polarized cross section for VB helicity λ

Extracting polarized cross sections from Sherpa

Status quo

- focus on hard interaction
- extended narrow-width approximation preserving spin correlations

$$
\int|\mathcal{M}|^{2} \propto \sum_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}} \mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{P}} \mathcal{M}_{\lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{* \mathcal{P}} \mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{D}} \mathcal{M}_{\lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{* \mathcal{D}}
$$

Hard process

- vector boson production
- result: matrix element tensor $\left|\mathcal{M}^{\mathcal{P}}\right|_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{2}=\mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{P}} \mathcal{M}_{\lambda_{1} \ldots \lambda_{n}^{\prime}}^{* \mathcal{P}}$
structure: tree
- branch = one helicity combination $|\mathcal{M}|_{\lambda_{1} \lambda_{1} \ldots \lambda_{n} \lambda_{n}^{\prime}}^{2}$
- level = one particle
- number of starting branches / level $=($ helicity degrees of freedom) ${ }^{2}$

Hard decays

- vector boson decays
- spin correlation algorithm from P. Richardson. JHEP 0111 (2001) 029 implemented
- algorithm generates:

- decay chain
- decay matrix for each particle
- connection to the whole decay matrix element

$$
\mathcal{D}_{\lambda_{\mathcal{A}} \lambda_{\mathcal{A}}^{\prime}}=\frac{1}{\mathcal{N}_{\mathcal{D}}} \mathcal{M}_{\lambda_{\mathcal{A}}}^{\mathcal{D}} \mathcal{M}_{\lambda_{\mathcal{A}}^{\prime}}^{\mathcal{D} *}
$$

\rightarrow result: unpolarized cross section in NWA

Calculation of polarized cross sections

- "Never change a running system": leave algorithm above unchanged

Steps for separating polarizations
 $$
\left|\mathcal{M}^{\text {pol }}\right|_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{2} \propto \mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{P}} \mathcal{M}_{\lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{* \mathcal{P}} \mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{D}} \mathcal{M}_{\lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{* \mathcal{D}}
$$

2

4
\rightarrow polarized cross sections of all helicity combinations + interferences between them easily accessible in a single simulation run
\rightarrow interferences between different polarizations are calculated directly

Change of polarization definition

Polarization definition

General: Spin basis

- massive VB characterized by momentum, integer spin value, spin projection onto an arbitrary axis
- common choice: axis // VB momentum k^{μ}

(=helicity basis)

\rightarrow common representation of polarization vectors:

$$
\varepsilon_{ \pm}^{\mu}(k)=\frac{e^{\mp \mathrm{i} \phi}}{\sqrt{2}}(0,-\cos \theta \cos \phi \pm \mathrm{i} \sin \phi,-\cos \theta \sin \phi \mp \mathrm{i} \cos \phi, \sin \theta),
$$

$$
\varepsilon_{0}^{\mu}(k)=s_{k}^{\mu}=\frac{k^{0}}{m}\left(\frac{|\mathbf{k}|}{k^{0}}, \cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta\right),
$$

- Weyl-van-der-Waerden formalism: spin basis connected with light-like reference vector

$$
k^{\mu}=\alpha a^{\mu}+b^{\mu} \quad \alpha=\frac{k^{2}}{2 a \cdot k}
$$

For helicity basis: Reference system

- helicity not lorentz covariant

$$
\Lambda_{\nu}^{\mu} \varepsilon^{\nu}(k) \neq \varepsilon^{\mu}(\Lambda k)
$$

\rightarrow polarization vector depends on choice of frame for k^{μ}

Calculate ε^{μ} from k^{μ} in Lab

Calculate ε^{μ} from k^{μ} in different frame + transformation to Lab

- Lab = frame for matrix element calculation

default polarization definition in Sherpa:

- no helicity basis
- laboratory frame: VB center of mass system \& parton-parton frame = common frames in analysis

Change of polarization definition

- Two ways to change polarization definition in matrix elements:
- a priori: change polarization definition directly in matrix element generator
- a posteriori: transformation of calculated production tensor, decay matrices
- change of basis = basis transformation of polarization vectors

- Transformation of matrix elements

\rightarrow Calculation of polarized cross sections for VB in different reference frames possible currently laboratory frame, VB center of mass frame, parton-parton-frame, special user-defined frames

Validation

NSTITMTE OF
INSITATEAR AND PARTICLE PHYSICS

Polarization fractions

- good agreement between literature results and Sherpa

Literature:

- Wj: M. Pellen et al., arXiv: 2109.14336 [hep-ph]

STRIPPER framework@NNLO, matrix element generation with AvH library, NWA, laboratory frame for polarization definition

- ssWW: A. Ballestrero et al., arXiv: 2007.07133v2 [hep-ph]

Phantom Monte Carlo Event generator @LO, DPA, laboratory- \& VB-COM frame for polarization definition

Differential cross sections : Same sign WW process

 PARTICLE PHYSICS
From paper

From my own implementation in Sherpa

Shapes, relative contributions of different polarizations to the full, contributions of same polarization with different polarization definitions relative to each other seem to be following the same trend Normalization does not fit exactly maybe due to different approximations DPA vs. NWA

From paper

From my own implementation in Sherpa

- Shapes, relative contributions of different polarizations to the full, contributions of same polarization with different polarization definitions relative to each other seem to be following the same trend Normalization does not fit exactly maybe due to different approximation DPA vs. NWA

Differential cross sections: Single W process

 PARTICLE PHYSICS
$\Delta \phi_{1, ~ j e t}$

From paper

From my implementation
Azimuthal angle difference of lepton and jet

Shapes are similar
differences in relative contributions of different polarizations to the polsum and in shape maybe due to NNLO effects

- Differential cross section difficult to compare due to higher order QCD effects
$\cos \theta_{1}^{*}$

From paper

From my implementation
Lepton decay angle

Summary and Outlook

What's already done ..
\checkmark first implementation of polarized cross sections in Sherpa working
\checkmark Main features:

- all polarized cross sections in one simulation run
- direct calculation of interference between different polarizations
- provide several reference frames: laboratory frame, center-of-mass system of the VB, parton-parton frame, frames defined from custom combinations of hard process particles

What comes next ...

- Validation with further vector boson production processes: WZ(jj), W+W-(jj), ZZ(jj)
- Validation with samples from Madgraph
first applications in phenomenological studies e.g. off shell effects or NLO-QCD calculation
- Preparation for Release

Thank you for your attention!

Questions?

INSTITUTE OF
NUCLEAR AND NUCLEAR AND

Backup

Calculation of polarized cross sections

hard process

output of matrix element generator (COMIX):

$$
\left|\mathcal{M}^{\mathcal{P}}\right|_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{2}=\mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{P}} \mathcal{M}_{\lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{* \mathcal{P}}
$$

structure: tree

- branch = one helicity combination
- level = one particle
- number of starting branches / level $=(\text { helicity degrees of freedom })^{2}$
- end of branch: $|\mathcal{M}|_{\lambda_{1} \lambda_{1}^{\prime} \ldots \lambda_{n} \lambda_{n}^{\prime}}^{2}$

hard decay

spin correlation algorithm generates

* decay chain
* decay matrix for each particle
$\mathcal{D}_{\lambda_{\mathcal{A}} \lambda_{\mathcal{A}}^{\prime}}=\frac{1}{\mathcal{N}_{\mathcal{D}}} \mathcal{M}_{\lambda_{\mathcal{A}}}^{\mathcal{D}} \mathcal{M}_{\lambda_{\mathcal{A}}^{\prime}}^{\mathcal{D} *}$
connection with whole decay matrix element:

Calculation of full onshell matrix element $\left|\mathcal{M}_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{\mathcal{P}}\right|^{2}\left|\mathcal{M}_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{\mathcal{D}}\right|^{2}$ out of $\left|\mathcal{M}^{\mathcal{P}}\right|_{\lambda_{1} \ldots \lambda_{n} ; \lambda_{1}^{\prime} \ldots \lambda_{n}^{\prime}}^{2}=\mathcal{M}_{\lambda_{1} \ldots \lambda_{n}}^{\mathcal{P}} \mathcal{M}_{\lambda_{1} \ldots \lambda_{n}^{\prime}}^{* \mathcal{P}} \& \mathcal{D}_{\lambda_{A} \lambda_{\mathcal{A}}^{\prime}}=\frac{1}{\mathcal{N}_{\mathcal{D}}} \mathcal{M}_{\lambda_{\mathcal{A}}}^{\mathcal{D}} \mathcal{M}_{\lambda_{\mathcal{A}}}^{\mathcal{D} *}$

1. Search level of current VB A in production matrix element
2. For each branch $\lambda_{A} \lambda_{A}^{\prime}$ starting at this level multiply all matrix elements at its end with same entry of

Result: Amplitude tensor with all polarized matrix elements

Output of polarized cross sections

- polarized cross sections of all helicity combinations + interferences between them easily available at same time
\rightarrow only one simulation run necessary
\rightarrow different to e.g. Madgraph

What's missing?

1. separation between polarized cross sections \& interferences between different polarizations

2. labeling of polarized matrix elements
3. for massive VBs: add + and contribution to transversal weight

Output

- polarized cross section (\& interference) handled \& printed out as additional weights
- weightnames: particle1.helicity1_particle2.helicity2... (e.g. W+.+_W+.-)

Spin-Correlation Algorithm

Spin-Correlation Algorithm

- originally invented (and implemented?) for unstable strong interacting particles
\rightarrow production and decay should be splitted to simulate QCD radiation before decay
\rightarrow generate right kinematics
- but can also be used to access polarization
- implemented in the Hard_Decays-Modul of Sherpa, more concrete Decay_Handler_Base class
- algorithm starts after calculating production matrix element
\rightarrow starting point: Amplitude2-Tensor

$$
\left|\mathcal{M}^{p r o d}\right|_{\lambda_{1} \lambda_{1}^{\prime} \ldots \lambda_{n} \lambda_{n}^{\prime}}^{2}
$$

Peter Richardson

Cavendish Laboratory, University of Cambridge, Madingley Roud, Cambridge, CB3 OHE, UK, and
DAMTP, University of Cambridge, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge, CB3 OWA, UK.

> ABSTRACT: We show that the algorithm originally proposed by Collins and Knowles for spin correlations in the QCD parton shower can be used in order to include spin correlations between the production and decay of heavy particles in Monte Carlo event generators. This allows correlations to be included while maintaining the step-by-step approach of the Monte Carlo event generation process. We present examples of this approach for both the Standard and Minimal supersymmetric Standard Models. A merger of this algorithm and that used in the parton shower is discussed in order to include all correlations in the perturbative phase of event generation. Finally we present all the results needed to implement this algorithm for the Standard and Minimal Supersymmetric Standard Models.

Spin-Correlation Algorithm

- here only for VB decaying into stable leptons
hard process final state particles \& production $(2 \rightarrow \mathrm{n})$ matrix element tensor $\left|\mathcal{M}^{\mathcal{P}}\right|_{\lambda_{1} \ldots \lambda_{n} \lambda_{1}^{\prime} \ldots . . . \lambda_{n}^{\prime}}^{2}$
choose one outgoing particle A randomly

Spin density matrix $\rho_{\lambda_{j} \lambda_{j}^{\prime}}(A)=\frac{1}{N_{\rho}} \mathcal{M}^{\mathcal{P}}{ }_{\kappa_{1} \kappa_{2} ; \lambda_{1} \ldots \lambda_{j} \ldots \lambda_{n}} \mathcal{M}_{\kappa_{1} \kappa_{2} ; \lambda_{1}^{\prime} \ldots \lambda_{j}^{\prime} \ldots \lambda_{n}^{\prime}}^{\mathcal{P}_{*}} \prod_{i \neq j} \mathcal{D}_{\lambda_{i} \lambda_{i}^{\prime}}^{i}$ with $\mathcal{D}_{\lambda_{i} \lambda_{i}^{\prime}}^{i}=\frac{1}{n_{h e l}} \delta_{\lambda_{i} \lambda_{i}^{\prime}} \quad$ if particle not chosen yet
choose decay channel of A according to branching ratios

Generate momenta of A's decay products according to $\rho_{\lambda_{A} \lambda_{A}^{\prime}} \mathcal{M}_{\lambda_{\mathcal{A}} ; \lambda_{1} \ldots \lambda_{n}}^{\mathcal{D}} \mathcal{M}_{\lambda_{\mathcal{A}} ; \lambda_{1} \ldots \lambda_{n}}^{\mathcal{D}_{*}}$
all decay products stable
Calculate A's decay matrix $\quad \mathcal{D}_{\lambda_{\mathcal{A}} \lambda_{\mathcal{A}}^{\prime}}=\frac{1}{\mathcal{N}_{\mathcal{D}}} \mathcal{M}_{\lambda_{\mathcal{A}} ; \lambda_{1} \ldots \lambda_{n}}^{\mathcal{D}} \mathcal{M}_{\lambda_{\mathcal{A}}^{\prime} ; \lambda_{1} \ldots \lambda_{n}}^{\mathcal{D} *}$

PolWeightMap - Extraction of polarized cross sections out of Amplitude tensor

Generation of PolWeightMap
Calculation of unpolarized result (sum of all amplitude tensor entries) for normalization

Extraction, Normalization and Labeling of polarized matrix elements and interferences + adding to weights map
yes massive VB included?

Writing PolWeightmap into overall weights map, handle output in event record \& multiply all weights with unpolarized result (and BR)

TECHNISCHE UNIVERSITA
DRESDEN

Extraction \& Labeling of polarized cross sections

Weyl-van-der-Waerden formalism

 PARTICLE PHYS
How Sherpa calculates polarization vectors -Weyl-van-der Waerden formalism

- matrix elements contain different mathematical objects: spinors, lorentz vectors ...
\rightarrow difficult to calculate especially for many final state particles
\rightarrow group theory: all matrix element objects can be described by same mathematical object: Weyl-van-der-Waerden-Spinors
(2D fundamental irreduzible representations of Lorentz group $D(1 ⁄ 2,0) \& D(0,1 / 2))$
- covariant: ψ_{A}
- contravariant: $\psi^{\dot{A}}$
\rightarrow simplifies calculation
\rightarrow discrete symmetries: number of independent matrix elements decreases

How Sherpa calculates polarization vectors -Weyl-van-der Waerden formalism

- four vectors: belong to spinor representation $D(1 / 2,1 / 2)=D(1 / 2,0) \otimes D(0,1 / 2)$:

$$
K_{\dot{A} B}=k^{\mu} \sigma_{\mu, \dot{A} B}=\left(\begin{array}{cc}
k^{0}+k^{3} & k^{1}+i k^{2} \\
k^{1}-i k^{2} & k^{0}-k^{3}
\end{array}\right)
$$

\rightarrow not a spinor decomposition yet

- factorize (not light-like) four vector k^{μ} into two light-like four vectors: $k^{\mu}=\alpha a^{\mu}+b^{\mu}$ with $\alpha=\frac{k^{2}}{2 a \cdot k}$
- transformation to spinor representation:
arbitrary choice, reference vector

$K_{\dot{A} B}=\alpha a_{\dot{A}} a_{B}+b_{\dot{A}} b_{B}$ with $b_{A}=-\frac{K_{\dot{B} A} a^{\dot{B}}}{\sqrt{K_{\dot{C} D} a^{\dot{C}} a^{D}}}$ and $\alpha=\frac{k^{2}}{K_{\dot{C} D} a^{\dot{C}} a^{D}}$
- for polarization vectors:

$$
\varepsilon_{+, \dot{A} B}(k)=\frac{\sqrt{2} a_{\dot{A}} b_{B}}{\langle a b\rangle} \quad \varepsilon_{-, \dot{A} B}(k)=\frac{\sqrt{2} b_{\dot{A}} a_{B}}{\langle a b\rangle} \quad \varepsilon_{0, \dot{A} B}(k)=\frac{1}{m}\left(b_{\dot{A}} b_{B}-\alpha a_{\dot{A}} a_{B}\right)
$$

Implementation of Basis-Transformation

 NUCLEAR AND
Implementation of Basis-Transformation

- Two ways to get Amplitude tensor with polarization vectors defined in new basis:
- a priori: change polarization definition directly in matrix element generator COMIX
- a posteriori: transformation of calculated Amplitude tensor during decay generation
- change of basis = basis transformation of polarization vectors
\rightarrow polarization vectors with new reference vector = linear combination of default polarization vectors
- Transformation of Amplitude tensor

I. Determination of transformation coefficients

- solving system of equations:

Implementation of Basis-Transformation

- zeroth component not independent due to $p^{\mu} \epsilon_{\mu}=0$
\rightarrow need to consider only spatial components
- solving equation by inverting matrix of default polarization vectors: using explicit formula for 3×3 invertible matrices

$$
\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)^{-1}=\frac{1}{\operatorname{det} A} \cdot\left(\begin{array}{cll}
e i-f h & c h-b i & b f-c e \\
f g-d i & a i-c g & c d-a f \\
d h-e g & b g-a h & a e-b d
\end{array}\right)
$$

- determination of transformation coefficients must be done for each particle in Amplitude tensor

- coefficients only calculated for incoming particles
\rightarrow coefficients for outgoing particles \& antiparticles: complex conjugate

Implementation of Spinbasis-Transformation

II. Transformation of Amplitude tensor

$$
|\mathcal{M}|_{\lambda_{1} \lambda_{1}^{\prime} \ldots \lambda_{n} \lambda_{n}^{\prime}}^{2}=\sum_{\kappa_{1} \kappa_{1}^{\prime} \ldots \kappa_{n} \kappa_{n}^{\prime}} a_{\lambda_{1} \kappa_{1}}^{\operatorname{part1}} a_{\lambda_{1}^{\prime} \kappa_{1}^{\prime}}^{\operatorname{part}} \cdots a_{\lambda_{n} \kappa_{n}}^{\operatorname{partn}} a_{\lambda_{n}^{\prime} \kappa_{n}^{\prime}}^{\operatorname{partn*}}|\mathcal{M}|_{\kappa_{1} \kappa_{1}^{\prime} \ldots \kappa_{n} \kappa_{n}^{\prime}}^{2}
$$

level $+1 ; \rightarrow$ transformation method is recursive to handle arbitrary number of propagators
modifie d coeff matrix
level < \# particles
loop over all branches starting at level level of tensor \& for each branch delete all coefficients of current particle which does not match helicity combination assigned to current branch

[^0]

From spinbasis trafo to reference system trafo

II. Determination of transformation coefficients equivalent to transformation of spin basis - Transformation of Amplitude tensor equivalent to transformation of spin basis
mplementation of polarized cross sections for vector bosons in Sherpa MCnet Me Nuclear and Particle physics / / Mareen Hoppe MCnet Meeting Graz // September 23, 2022

Steps towards basis transformation

I. For each particle in Amplitude tensor:

1. Determination of desired and current polarization vectors

- changing spin basis: calculation of polarization vector with default \& new reference vector - changing reference system:

2. Determination of transformation coefficients
II. Transformation of Amplitude tensor
$|\mathcal{M}|_{\lambda_{1} \lambda_{1}^{\prime} \ldots \lambda_{n} \lambda_{n}^{\prime}}^{2}=\sum_{\kappa_{1} \kappa_{1}^{\prime} \ldots \kappa_{n} \kappa_{n}^{\prime}} a_{\lambda_{1} \kappa_{1}}^{\text {part1 }} a_{\lambda_{1}^{\prime} \kappa_{1}^{\prime}}^{\text {part1* }} \cdots a_{\lambda_{n} \kappa_{n}}^{\text {partn }} a_{\lambda_{n}^{\prime \kappa_{n}^{\prime}}}^{\text {partn }}|\mathcal{M}|_{\kappa_{1} \kappa_{1}^{\prime} \ldots \kappa_{n} \kappa_{n}^{\prime}}^{2}$

Simulation details

 NUCLEAR AND
Current status: Validation

- First implementation finished
- Currently testing / validation with different processes / generators
- first comparison with
A. Ballestrero et al. : Different polarization definitions in same-sign WW scattering at the LHC. Physics Letters B, Volume 811, 135856 (2020). DOI: 10.1016/j.physletb.2020.135856, arXiv: 2007.07133v2 [hep-ph]
- Phantom Monte Carlo Event generator at LO
- On-Shell projection technique
- parton level
- fiducial phase space
- only $W^{+} W^{+} \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu}$ decays
- Laboratory- \& VB-COM frame for polarization definition
M. Pellen et al.: polarized W+j production at the LHC: a study at NNLO QCD accuracy. Journal of High Energy Physics (2022), 160. DOI: 10.1007/JHEP02(2022)160, arXiv: 2109.14336 [hep-ph]
- STRIPPER framework, matrix element generation with AvH library, OPENLOOPS 2, own work at NNLO QCD
- narrow-width approximation
- inclusive and fiducial phase space
- W-decays to e, μ; all results for one decay channel
- only laboratory frame for polarization definition

Simulation Setup

- Simulation: parton level, LO, narrow-width approximation
- Hard process: $j j \rightarrow W^{+} W^{+} j j$
- Hard decay: $W^{+} W^{+} \rightarrow e^{+} \nu_{e} \mu^{+} \nu_{\mu} \quad W^{+} W^{+} \rightarrow e^{+} \nu_{e} e^{+} \nu_{e}$ $W^{+} W^{+} \rightarrow \mu^{+} \nu_{\mu} \mu^{+} \nu_{\mu}$
- PDF-Set: NNPDF30_lo_as_0130
- EW-parameter: G_{μ}-scheme: $\mathrm{m}_{\mathrm{w}}=80.358 ; \mathrm{m}_{\mathrm{z}}=91.153$;
$G_{F}=1.16637 \times 10^{-5} \mathrm{GeV}^{2}$
- Factorization/Renormalization scale: $\sqrt{p_{\perp}\left(j_{1}\right) p_{\perp}\left(j_{2}\right)}$

Phasespace definition

- Inclusive jet cuts directly during simulation
- minimum transversal jet momentum $p_{\perp}(j) \geq 20 \mathrm{GeV}$
- maximum jet pseudorapidity $\eta(j) \leq 5$
- minimum jet-jet-mass $m(j j) \geq 500 \mathrm{GeV}$
- minimum jet-jet-pseudorapidity separation $|\Delta \eta(j j)| \geq 2.5$
- Fiducial lepton cuts implemented in modified Rivet analysis from Carsten Bittrich
- minimum MET: 40 GeV
- minimum transverse momentum: 20 GeV
- maximum pseudorapidity: 2.5

Simulation Setup

- Simulation: parton level, LO
- Approximation: narrow-width without mass smearing
- Hard process: $j j \rightarrow W^{+} j$
- Hard decay: average of $W^{+} \rightarrow e^{+} \nu_{e} \quad W^{+} \rightarrow \mu^{+} \nu_{\mu}$
- PDF-Set: NNPDF31_lo_as_0118, $\mathrm{n}_{\mathrm{f}}=5$
- EW-parameter: G_{μ}-scheme: $\mathrm{m}_{\mathrm{w}}=80.3520 ; \mathrm{m}_{\mathrm{z}}=91.1535$;
$G_{F}=1.16638 \times 10^{-5} \mathrm{GeV}^{2}$
- Factorization/Renormalization scale: $\mu=\frac{1}{2}\left(\sqrt{M_{W}^{2}+p_{\perp, W}^{2}}+p_{\perp, j}\right)$
- Inclusive jet cuts directly during simulation
- minimum transversal jet momentum $p_{\perp}(j)>30 \mathrm{GeV}$
- maximum jet rapidity $|y(j)|<2.4$
- Fiducial charged lepton \& jet cuts implemented in my own Rivet analysis
- minimum Delta R: $\Delta R(l, j)>0.4$
- minimum transverse momentum: $p_{\perp}(l)>25 \mathrm{GeV}$
- maximum pseudorapidity: $\left|\eta_{l}\right|<2.5$
- minimum transverse W mass: $M_{\perp}(W)>50 \mathrm{GeV}$

$$
M_{\perp}(W)=\sqrt{M_{W}^{2}+p_{\perp, W}^{2}}=\sqrt{2 p_{\perp, l} \cdot p_{\perp, \nu}(1-\cos \Delta \phi)} \quad \Delta \phi=\min \left(\left|\phi_{l}-\phi_{\nu}\right|, 2 \pi-\left|\phi_{l}-\phi_{\nu}\right|\right)
$$

TECHNIUELIth
Implementation of polarized cross sections for vector boson
Institute of Nuclear and Particle physics / Mareen Hoppe
MCnet Meeting Graz // September 23, 2022
UNIVERSITÄ
DRESDEN
BEAMS: 2212
BEAM_ENERGIES: 6500

ssWW - total cross sections

Total cross section - inclusive phase space

$\sigma_{\text {paper }} \cdot 2[f b]^{*}$		Ratio [\%] *	$\sigma_{\text {Sherpa }}[f b]$	Ratio [\%] *
full	6.370 ± 0.006		6.3697 ± 0.0024	
unpol	6.334 ± 0.004		6.2225 ± 0.0024	
Lab	6.3262 ± 0.0032	100	6.231 ± 0.015	100
polsum			-0.008 ± 0.015	
int	0.5146 ± 0.0006	8.134 ± 0.010	0.5132 ± 0.0026	8.24 ± 0.05
0-0	2.4796 ± 0.0024	39.20 ± 0.04	2.450 ± 0.005	39.32 ± 0.12
0-T + T-0	3.332 ± 0.002	52.67 ± 0.04	3.268 ± 0.005	52.45 ± 0.15
T-T	6.3274 ± 0.0029	100		
WW-CoM			6.370 ± 0.005	100
polsum			0.001 ± 0.005	
int	0.6550 ± 0.0008	10.352 ± 0.014	0.6625 ± 0.0009	10.40 ± 0.016
0-0	2.0324 ± 0.0020	32.121 ± 0.035	2.0606 ± 0.0021	32.35 ± 0.04
0-T + T-0	3.640 ± 0.002	57.53 ± 0.04	3.6469 ± 0.0032	57.25 ± 0.07
T-T				

Comparing my obtained cross section with the values on the paper (multiplied by a factor 2) we obtain an agreement of better than
Lab: $\leq \mathbf{2 \%}$ (cross section)
< 1.5\% (ratio)
CoM: $\leq 1.5 \%$ (cross section)

$$
<1 \% \text { (ratio) }
$$

interference contribution compatible with zero
*errors calculated according to gaussian error propagation; polsum calculated

DRESDEN DRESDEN
concept

Total cross section - inclusive phase space

	$\sigma_{\text {paper }} \cdot 2\left[f b^{*}\right.$	Ratio [\%] *	$\sigma_{S h e r p a}[f b]$	Ratio [\%] *
full	6.370 ± 0.006		6.3697 ± 0.0024	
unpol	6.334 ± 0.004		6.2225 ± 0.0024	
Lab				
polsum	6.3262 ± 0.0032	100	6.231 ± 0.015	100
int			-0.008 ± 0.015	
0-0	0.5146 ± 0.0006	8.134 ± 0.010	0.5132 ± 0.0026	8.24 ± 0.05
0-T + T-0	2.4796 ± 0.0024	39.20 ± 0.04	2.450 ± 0.005	39.32 ± 0.12
T-T	3.332 ± 0.002	52.67 ± 0.04	3.268 ± 0.005	52.45 ± 0.15
WW-CoM				
polsum	6.3274 ± 0.0029	100	6.370 ± 0.005	100
int			0.001 ± 0.005	
0-0	0.6550 ± 0.0008	10.352 ± 0.014	0.6625 ± 0.0009	10.40 ± 0.016
0-T + T-0	2.0324 ± 0.0020	32.121 ± 0.035	2.0606 ± 0.0021	32.35 ± 0.04
T-T	3.640 ± 0.002	57.53 ± 0.04	3.6469 ± 0.0032	57.25 ± 0.07

Comparing my obtained cross section with the values on the paper (multiplied by a factor 2) we obtain an agreement of better than
Lab: $\leq \mathbf{2 \%}$ (cross section)

$$
\text { < } 1.5 \% \text { (ratio) }
$$

CoM: $\leq 1.5 \%$ (cross section)

$$
<1 \% \text { (ratio) }
$$

interference contribution compatible with zero
*errors calculated according to gaussian error propagation; polsum calculated

Total cross section - fiducial phase space

$\sigma_{\text {paper }} \cdot 2[f b]^{*}$		Ratio [\%] *	$\sigma_{S h e r p a}[f b]$	Ratio [\%] *
full	3.186 ± 0.004		3.1826 ± 0.0012	
unpol	3.144 ± 0.004		3.0718 ± 0.0016	
Lab	3.1998 ± 0.0022	100	3.0239 ± 0.0030	100
polsum	0.2370 ± 0.0002	7.407 ± 0.010	0.2349 ± 0.0004	7.768 ± 0.015
0-0	1.2248 ± 0.0012	38.28 ± 0.06	1.1728 ± 0.0012	38.78 ± 0.06
0-T + T-0	1.7380 ± 0.0018	54.32 ± 0.09	1.6160 ± 0.0018	53.44 ± 0.08
T-T	3.1880 ± 0.0022	100		
WW-CoM	0.3104 ± 0.0004	9.737 ± 0.016	0.3059 ± 0.0005	10.106 ± 0.019
polsum	1.0076 ± 0.0012	31.61 ± 0.05	0.9717 ± 0.0010	32.10 ± 0.05
0-0	1.8700 ± 0.0018	58.66 ± 0.08	1.7493 ± 0.0021	57.79 ± 0.09
0-T + T-0		3.0268 ± 0.0031	100	
T-T				

Comparing my obtained cross section with the values on the paper (multiplied by a factor 2) we obtain an agreement of better than
Lab: $\leq 5.5 \%$ (cross section)

$$
\leq 5 \% \text { (ratio) }
$$

CoM: < 6.5\% (cross section)

$$
\leq 4 \% \text { (ratio) }
$$

Literature:

A. Ballestrero et al. : Different polarization definitions in same-sign WW scattering at the LHC. arXiv: 2007.07133v2 [hep-ph]

- Phantom Monte Carlo Event generator at LO
- double-pole approximation
- Laboratory- \& VB-COM
frame for polarization definition

Single W

Total cross section - one lepton decay channel

Lab	$\sigma_{\text {paper }}[\mathrm{pb}]$	${ }^{*} \sigma_{\text {Sherpa }}[\mathrm{pb}] \quad{ }^{* *}$	Ratio [\%] *	
full	408.69 ± 0.03		431.40 ± 0.09	
unpol	413.83 ± 0.03	100.150 ± 0.010	420.30 ± 0.09	96.872 ± 0.030
polsum	413.21 ± 0.03	100	433.87 ± 0.10	100
L	93.898 ± 0.005	22.7240 ± 0.0020	94.711 ± 0.032	21.829 ± 0.009
T	319.31 ± 0.03	77.275 ± 0.009	339.16 ± 0.08	78.171 ± 0.026

Comparing my obtained cross section with the values on the paper (multiplied by a factor 2) we obtain an agreement of better than cross section: $\leq 6.5 \%$
ratio: $\leq 4 \%$

Open questions

- why full calculation does not fit?
- why is the interference so big?
- why are there differences in polarized cross sections?

Literature:

M. Pellen et al.: polarized $W+j$ production at the LHC: a study at NNLO QCD accuracy, arXiv: 2109.14336 [hep-ph]

- STRIPPER framework, matrix element generation with AvH library, OPENLOOPS 2, own work at NNLO QCD
narrow-width approximation
only laboratory frame for polarization definition

Total cross section - one lepton decay channel
*errors calculated according to gaussian error

Lab	$\sigma_{\text {paper }}[\mathrm{pb}]$	Ratio [\%] *	$\sigma_{\text {Sherpa }}[\mathrm{pb}]{ }^{* *}$	Ratio [\%] *
full	408.69 ± 0.03		431.40 ± 0.09	
unpol	413.83 ± 0.03	100.150 ± 0.010	420.30 ± 0.09	96.872 ± 0.030
polsum	413.21 ± 0.03	100	433.87 ± 0.10	100
L	93.898 ± 0.005	22.7240 ± 0.0020	94.711 ± 0.032	21.829 ± 0.009
T	319.31 ± 0.03	77.275 ± 0.009	339.16 ± 0.08	78.171 ± 0.026

Comparing my obtained cross section with the values on the paper (multiplied by a factor 2) we obtain an agreement of better than
cross section: $\leq 6.5 \%$
ratio: $\leq 4 \%$

Open questions

- why full calculation does not fit?
- why is the interference so big?
- why are there differences in polarized cross sections?

Literature:

M. Pellen et al.: polarized $W+j$ production at the LHC: a study at NNLO QCD accuracy, arXiv: 2109.14336 [hep-ph]

- STRIPPER framework, matrix element generation with AvH library, OPENLOOPS 2, own work at NNLO QCD
narrow-width approximation
only laboratory frame for polarization definition

Single W

inclusive phase space PARTICLE PHYS
$\cos \theta_{1}^{*}$

Lepton decay angle

$\Delta \phi_{1, \text { jet }}$

$p_{\perp, \text { jet }}$

$p_{\perp, l}$

$\cos \left(\Delta \theta_{1, \mathrm{jet}}\right)$

Single W

fiducial phase space further observables

$p_{\perp, \text { jet }}$

Jet transverse momentum

DRESDEN concept

y_{j}

$p_{\perp, l}$

y_{l}

$\cos \left(\Delta \theta_{1, \mathrm{jet}}\right)$

[^0]: .

