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Summary
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for s;j = g; - q;. The emitted parton is labelled n, 7 is its parent, j, k are spectators (defined
later), and 6 the previous angular scale in the shower. This modification extends the
angular-ordered framework to the three-jet limit.



Motivation

In previous work:
« “Parton branching at amplitude level” ). rorshaw, JH, s. Pistzer arxiv:1905.08686

 “Soft gluon evolution and non-global logarithms”
R. Angeles Martinez, M. De Angelis, J. Forshaw, S. Platzer, M. Seymour arXiv:1802.08531

Collinear poles from soft gluons cause issues in the Monte Carlo
implementation (CVolver).

General observation: collinear poles are always colour diagonal. They
are “simple”, we must be able to exploit this.

Exploiting this is at the core of the coherent branching formalism.



Example: Collinear poles are colour diagonal
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Example: Collinear poles are colour diagonal
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Observation

We have shown the general observation at tree level: collinear poles are
always colour diagonal.

However, this observation can be flipped.

Off-diagonal colour structures are always collinear finite.

It doesn’t take much work to adapt the previous slides to show that each
diagonal colour structure ([i-i]) can be associated with a single colour
pole.




Useful definitions
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Coherence: traditional approach

2005
2—. . Ay="(OsPL- 1]+ O8y%2 - 2]+ ©)837[3- 3])

_1)ai 1
(PP = 5 (wij + wik — wik)

[0+ §] = T [ Mp—1) (Mn—1| T;'
9 * 94;

T, =0 wiilgn) =
ZJ J 2]( n) Gn - 9; 9n " 4;



Coherence: traditional approach
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Coherence: traditional approach
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Coherence: traditional approach
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Coherence: traditional approach
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Coherence: more generally?

But why azimuthally average if it constrains us to the 6;, = nw frame?

It prevents us from applying the derivation outside the 2-jet limit where
there is no azimuthal symmetry.

Outside the 2-jet limit in the 8,, = = frame terms with a 833" collinear pole
depend on the azimuth.



Coherence: more generally?

But why azimuthally average if it constrains us to the 6,, = m frame?

What the averaging achieves is it handles the commutation of limits: i.e.
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Coherence: more generally?

The lack of commutativity of these angular limits suggest the presence of
poles on the boundaries dividing the limits. It is these poles that average
to give theta functions.

However, we do not need to average to handle the poles. What we are
doing is computing Laurent series of the density matrix around the
emission angles.

When computing Laurent series around a pole you divide the domain
with other poles defining boundaries. Then compute the expansion in
each region. The union of the expansion across the regions provides the
complete expansion (taking care of overlaps).



Coherence: more generally

It turns out that for the simple string only one partition is really
necessary:
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Coherence: more generally

2 R R 1 A4 _ 20és

(@sT?[L-1]+ ©s5%[2- 2] + ©)s37[3- 3))

s

: 1
hUgPF = 5 (Wij + wik — wjk)
[i ) J] =T, |Mn—1> <Mn—1| T;'

qi * q;

T, =0 wiilgn) =
Z] J 2]( n) Gn - 9; 9n " 4;



Coherence: more generally
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Coherence: more generally
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Coherence: more generally
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The same steps can be followed to find the 3-
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The derivation is a little more subtle, more
regions must be identified, but the outcome is
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Returning to slide 2

The complete outcome can be summarised
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for s;; = ¢i- q;. The emitted parton is labelled n, 3 is its parent, j, k are spectators (defined
later), and @ the previous angular scale in the shower. This modification extends the
angular-ordered framework to the three-jet limit.

...up to terms of the order 9°.



In the literature

Therefore the accompanying partons k; are assumed to be soft and their distri-
bution can be treated as independent. Assembling together the contributions from
the three configurations Cs defined in (2.10), the distribution can be presented as
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where My(Cs) is the Born ¢gg matrix element and Wj is the distribution of the sof
gluon radiation off the hard three-parton antenna in the momentum configuj

be accommodated later.
For the configuration § = 3, for example, the squared Borng

Cros
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one-loop level, by
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Here wy is the standard two-parton antenna of the ab-dipole, which, within the
normalization convention prescribed by (2.20), is given by

_as_ (RP) o
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Here k; 4 is the invariant gluon transverse momentum with respect to the hyper-plane
defined by the P,, P, momenta.

The first term Cpwis in (2.23) is the “Abelian” contribution describing soft gluon
emission off the gg pair. The second term proportional to N, is its “non-Abelian”
counterpart that describes radiation off the hard gluon P;. Similar expressions for
two other kinematical configurations (§ = 1,2) is straightforward to write down by
properly adjusting the parton indices,
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To reach SL accuracy it is necessary to treat multi-parton emission at the two-loop

level. This involves allowing secondary gluon to split into two gluons or into a gg

pair. In principle, perturbative analysis of a system consisting of three hard partons

hep-ph/0004027

W13 + Wa3 — W12

The jet anomalous dimensions 77 can be computed using Eq. (3.8) in the fundamental
representation. At one loop this yields
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The subtracted terms are proportional to the unit matrix in colour space, so they affect only
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anomalous dimension for S, which is of course finite,
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It is straightforward to check that the general expressions in Eq. (5.16) and Eq. (5.6) ind
reduce to Eq. (B.6) and Eq. (B.3), respectively, upon evaluating the colour factors igfthe
chosen basis and substituting the one-loop values for vg, 63 and dg.
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Momentum conservation

There is a question of momentum conservation...

. 1 :
(n-1)gik — . (wij + wie — wy) WO Spectators for a given colour
structure. Genuine 3->4 transition.

There isn't a known solution to conserving recoils for 3->4 transitions.
The problem is consistency between the 2-jet limit and 3-jet limit.

g5 = ag2 + Bq1 +v(gs +qu) + k1 — g5 =age+ B(g1 +g93+q4) + kL

m D.o.f.in k; changes



Momentum conservation

There is a question of momentum conservation...

. 1 :
(n-1)gik — . (wij + wie — wy) WO Spectators for a given colour
structure. Genuine 3->4 transition.

There isn't a known solution to conserving recoils for 3->4 transitions.

Solution could be to just pick one of the spectators with a 50% chance
each time and use the large body of work on 2->3 recoils.

This is consistent with the 2-jet limit but doesn’t "feel right". It would be
sufficient for a Parton Shower implementation though.



Concluding

The complete outcome can be summarised
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for s;; = ¢i- q;. The emitted parton is labelled n, 3 is its parent, j, k are spectators (defined
later), and @ the previous angular scale in the shower. This modification extends the
angular-ordered framework to the three-jet limit.

...up to terms of the order 9°.
Randomly pick j or k as a spectator for recoil in a 2->3 style.



