How can an extended scalar sector improve your life?

Rui Santos
ISEL \& CFTC-UL

KIT particle physics colloquium

21 July 2022

Fundação para a Ciência e a Tecnologia
ministério da cî̂̀ncia, tecnologia e ensino superior

Outline

The Higgs potential and its many scalar extensions - new particles and new couplings (including dark matter)

- CP violation

Vacuum structure

Extensions of the SM - why are we happy?

It provides Dark Matter candidates compatible with all available experimental constraints.

It provides new sources of CP-violation.
It improves the stability of the SM.
It provides a means of having a strong first order phase transition.

It provides a 125 GeV scalar in agreement with all data.
\& You get a bunch of extra scalars, keeping the experimentalis \dagger busy and happy.

The 2-Higgs doublet model (general)

Potentials are usually used in minimal versions using ad-hoc symmetries. We just want them to suit our goals. The most general 2HDM is

$$
\begin{aligned}
V_{2 H D M}= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}-\left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+h . c .\right) \\
& \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& \left\{\frac{\lambda_{5}}{2}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right]\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+h . c .\right\}
\end{aligned}
$$

With the fields defined as (VEVs may be complex)

$$
\Phi_{1}=\binom{\phi_{1}^{+}}{\frac{1}{\sqrt{2}}\left(v_{1}+\rho_{1}+i \eta_{1}\right)} \quad \Phi_{2}=\binom{\phi_{2}^{+}=0 \text {, dark matter, IDM }}{\left.\frac{1}{\sqrt{2}}\left(v_{2}+\right)_{2}+i \eta_{2}\right)} \quad \text { Allows for a decoupling limit }
$$

The Z_{2} symmetric version is
Complex-CP-violation

$$
\begin{aligned}
V_{2 H D M}= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}-\left(m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+h . c .\right) \\
& \left.\left.\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)\left\{\frac{\lambda_{5}}{2}\right) \Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+h . c .\right\}
\end{aligned}
$$

The 2-Higgs doublet model (IDM)

So to get dark matter we just need to set to zero the VEV of one of the doublets

$$
\begin{aligned}
V_{I D M}= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2} \\
& \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+h . c .\right]
\end{aligned}
$$

With

$$
\Phi_{1}=\binom{G^{+}}{\frac{1}{\sqrt{2}}\left(v+h+i G_{0}\right)} \quad \Phi_{2}=\binom{H^{+}}{\frac{1}{\sqrt{2}}\left(H_{0}+i A_{0}\right)}
$$

CP violation not possible. To have CP-violation and dark matter one needs to further extend the model. Add a singlet.

There is an exact discrete symmetry
 that forces the second doublet to have only stable particles.

$$
\Phi_{2} \rightarrow-\Phi_{2}
$$

Dark Matter (IDM)

Dark Matter (IDM)

Searches need some kind of handle
Model should conserve "darkness" - we need a stable particle. The invisible width of the Higgs and the dark matter direct detection experiments set a bound on the so-called portal couplings).

$$
\begin{aligned}
& q \bar{q} \rightarrow(g, h, Z, \ldots) D M D M \\
& Z(q \bar{q})=Z(q) Z(\bar{q})=1 \times 1=1 \\
& Z(q \bar{q})=Z(H) Z(D M) Z(D M)=1 \times(-1) \times(-1)=1
\end{aligned}
$$

The "simplest" potentials

$$
\begin{aligned}
V= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}-m_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+h . c .\right)+\frac{m_{S}^{2}}{2} \Phi_{S}^{2} \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+h . c .\right]+\frac{\lambda_{6}}{4} \Phi_{S}^{4}+\frac{\lambda_{7}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right) \Phi_{S}^{2}+\frac{\lambda_{8}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \Phi_{S}^{2}
\end{aligned}
$$

with fields

$$
\Phi_{1}=\binom{\phi_{1}^{+}}{\frac{1}{\sqrt{2}}\left(v_{1}+\rho_{1}+i \eta_{1}\right)} \quad \Phi_{2}=\binom{\phi_{2}^{+}}{\frac{1}{\sqrt{2}}\left(v_{2}+\rho_{2}+i \eta_{2}\right)} \quad \Phi_{S}=v_{S}+\rho_{S}
$$

Particle (type) spectrum depends on the symmetries imposed
on the model, and whether they are
spontaneously broken or not.
In the N2HDM there are two charged particles and

4 neutral.

$$
\begin{aligned}
& \text { magenta } \Longrightarrow \text { SM } \\
& \text { magenta }+ \text { blue } \Longrightarrow \text { RxSM (also CxSM) } \\
& \text { magenta }+ \text { black } \Longrightarrow 2 H D M(\text { also } \mathrm{C} 2 \mathrm{HDM}) \\
& \text { magenta }+ \text { black }+ \text { blue }+ \text { red } \Longrightarrow \text { N2HDM }
\end{aligned}
$$

- $m^{2}{ }_{12}$ and λ_{5} real 2HDM
- $m^{2}{ }_{12}$ and λ_{5} complex C2HDM

The model can be CP violating or not.
softly broken $Z_{2}: \quad \Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow-\Phi_{2}$
softly broken $Z_{2}: \Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow-\Phi_{2} ; \Phi_{S} \rightarrow \Phi_{S}$ exact $Z_{2}^{\prime}: \Phi_{1} \rightarrow \Phi_{1} ; \Phi_{2} \rightarrow \Phi_{2} ; \Phi_{S} \rightarrow-\Phi_{S}$

Extensions of the SM

h_{125} couplings (gauge)

Yukawa couplings

There are other (better) reasons to use extra symmetries. In extension with more than one doublet tree-level FCNC appear (constrained by experiment).

1. Fine tuning - for some reason the parameters that give rise to tree-level FCNC are small Example: Type III models
2. Flavour alignment - for some reason we are able to diagonalise simultaneously both the mass term and the interaction term. Example: Aligned models
3. Use symmetries- for some reason L is invariant under some symmetry
3.1 Naturally small tree-level FCNCs. Example: BGL-type Models discrete symmetries make the FCNC terms proportional to CKM elements
3.2 No tree-level FCNCs. Example: Type I 2HDM Z_{2} symmetries cancel all tree-level FCNCs. In the particular case of type I the symmetries are such that only one doublet couples to all quarks and leptons

h_{125} couplings (Yukawa)

Type I $\quad \kappa_{U}^{\prime}=\kappa_{D}^{\prime}=\kappa_{L}^{\prime}=\frac{\cos \alpha}{\sin \beta}$
Type II $\quad \kappa_{U}^{\prime \prime}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{D}^{\prime \prime}=\kappa_{L}^{\prime \prime}=-\frac{\sin \alpha}{\cos \beta}$
Type $F(Y) \quad \kappa_{U}^{F}=\kappa_{L}^{F}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{D}^{F}=-\frac{\sin \alpha}{\cos \beta}$
Type LS $(X) \quad \kappa_{U}^{L S}=\kappa_{D}^{L S}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{L}^{L S}=-\frac{\sin \alpha}{\cos \beta}$

These are coupling modifiers relative to the SM coupling. May increase Yukawa relative to the SM.

$$
\text { III = } I^{\prime}=Y=\text { Flipped }=4 \ldots
$$

IV $=$ II' $=X=$ Lepton Specific $=3$...

$$
\begin{aligned}
Y_{C 2 H D M} & =\cos \alpha_{2} Y_{2 H D M} \pm i \gamma_{5} \sin \alpha_{2} \tan \beta(1 / \tan \beta) \\
Y_{N 2 H D M} & =\cos \alpha_{2} Y_{2 H D M}
\end{aligned}
$$

The C and the P in $C P$ violation

CERN's news page

Picture refers to Higgs production in association with a pair of top quarks

The CP-nature of the Higgs is still not known (we know it is not a pure CP-odd state). We need to probe Yukawa couplings: tth (production) and trh (decay).

Two remarks: a) 2HDM in CP-violating form used as benchmark model
b) alignment limit - H_{125} has exactly the SM couplings

$C P$ violation from C violation

Suppose we have a 2HDM extension of the SM but with no fermions. Also let us assume for the moment that the theory conserves C and P separately. The C and P quantum numbers of the Z boson is

$$
C\left(Z_{\mu}\right)=P\left(Z_{\mu}\right)=-1
$$

Because we have vertices of the type hhh and HHH,

$$
P(h)=P(H)=1 ; C(h)=C(H)=1
$$

Since the neutral Goldstone couples derivatively to the Z boson (and mixes with the A)

$$
P\left(G_{0}\right)=P(A)=1 ; C\left(G_{0}\right)=C(A)=-1 \quad C\left(Z_{\mu} \partial^{\mu} A h\right)=1 ; P\left(Z_{\mu} \partial^{\mu} A h\right)=1
$$

Or without being sloppy

$$
C Z_{\mu} C^{-1}=-Z_{\mu} ; \quad P Z_{\mu} P^{-1}=Z^{\mu}
$$

And

$$
P \partial^{\mu} G_{0} Z_{\mu} P^{-1}=\partial_{\mu} G_{0} Z^{\mu}
$$

CP violation from C violation

In the absence of fermions, invariance under P is guaranteed. If the bosonic Lagrangian violates $C P$, any resulting CP-violating phenomena must be associated with a P-conserving C-violating observable.

Let us now consider the CP-violating 2HDM, with scalar states h_{1}, h_{2}, h_{3}. Let us make our life harder by considering we are in the alignment limit (h_{1} is SM like). In this limit the vertices that are CP-violating

$$
h_{3} h_{3} h_{3} ; \quad h_{3} h_{2} h_{2} ; \quad h_{3} H^{+} H^{-} ; \quad h_{3} h_{3} h_{3} h_{1} ; \quad h_{3} h_{2} h_{2} h_{1} ; \quad h_{3} h_{1} H^{+} H^{-}
$$

A different choice of the parameters of the potential would interchange h_{2} and h_{3}.
A combination of 3 decays signals CP -violation

$$
\begin{aligned}
& h_{2} H^{+} H^{-} ; \quad h_{3} H^{+} H^{-} ; \quad Z h_{2} h_{3} \\
& h_{2} h_{k} h_{k} ; \quad h_{3} H^{+} H^{-} ; \quad Z h_{2} h_{3} ; \quad(k=2,3) \quad(2 \leftrightarrow 3) \\
& h_{2} h_{k} h_{k} ; \quad h_{3} h_{l} h_{l} ; \quad Z h_{2} h_{3} ; \quad(k, l=2,3)
\end{aligned}
$$

$C P$ violation from C violation

There are many other combinations if one moves away from the alignment limit

$h_{1} \rightarrow Z Z \Leftarrow C P\left(h_{1}\right)=1 \quad h_{3} \rightarrow h_{2} h_{1} \Rightarrow C P\left(h_{3}\right)=C P\left(h_{2}\right)$

Decay	CP eigenstates	Model
$h_{3} \rightarrow h_{2} Z$	$C P\left(h_{3}\right)=-C P\left(h_{2}\right)$	None

C2HDM T1 $\mathrm{H}_{S M}=\mathrm{H}_{1}$

Particle	H_{1}	H_{2}	H_{3}	H^{+}
Mass [GeV]	125.09	265	267	236
Width [GeV]	4.10610^{-3}	3.26510^{-3}	4.88010^{-3}	0.37
$\sigma_{\text {prod }}[\mathrm{pb}]$	49.75	0.76	0.84	

Resonance production: $\sigma_{\text {prod }}\left(\mathrm{H}_{2}\right) \times \mathrm{BR}\left(\mathrm{H}_{2}->\mathrm{H}_{1} \mathrm{H}_{1}\right)=760 \mathrm{fb} \times 0.252=192 \mathrm{fb}$ $+\sigma_{\text {prod }}\left(H_{3}\right) \times B R\left(H_{3}->H_{1} H_{1}\right)=840 \mathrm{fb} \times 0.280=235 \mathrm{fb}$

Test of CP in decays:

- $\sigma_{\text {prod }}\left(H_{3}\right) \times B R\left(H_{3}->H_{1} H_{1}\right)=235 \mathrm{fb}$
- $\sigma_{\text {prod }}\left(\mathrm{H}_{3}\right) \times B R\left(\mathrm{H}_{3}->\mathrm{Z} \mathrm{H}_{1}\right)=76 \mathrm{fb}$
- $\sigma_{\text {prod }}\left(\mathrm{H}_{2}\right) \times \mathrm{BR}\left(\mathrm{H}_{2}->\mathrm{H}_{1} H_{1}\right)=192 \mathrm{fb}$
- $\sigma_{\text {prod }}\left(H_{2}\right) \times B R\left(H_{2}->Z H_{1}\right)=122 \mathrm{fb}$

C2HDM at future colliders

It could happen that at the end of the last LHC run we just move closer and closer to the alignment limit and to a very CP-even 125 GeV Higgs. Considering a few future lepton colliders

Accelerator	$\sqrt{s}(\mathrm{TeV})$	Integrated luminosity $\left(a b^{-1}\right)$
CLIC	1.5	2.5
CLIC	3	5
Muon Collider	3	1
Muon Collider	7	10
Muon Collider	14	20

$$
\begin{aligned}
& h_{2} H^{+} H^{-} ; \quad h_{3} H^{+} H^{-} ; \quad Z h_{2} h_{3} \\
& h_{2} h_{k} h_{k} ; \quad h_{3} H^{+} H^{-} ; \quad Z h_{2} h_{3} ; \quad(k=2,3) \quad(2 \leftrightarrow 3) \\
& h_{2} h_{k} h_{k} ; \quad h_{3} h_{l} h_{l} ; ; \quad Z h_{2} h_{3} ; \quad(k, l=2,3)
\end{aligned}
$$

This is an s-channel process with a Z exchange and therefore a gauge coupling. We still need to detect the 2 scalars.

C2HDM at future colliders

If the new particles are heavier we will need more energy. Still it will be a hard task.

$$
h_{2} H^{+} H^{-} ; \quad h_{3} H^{+} H^{-} ; \quad Z h_{2} h_{3}
$$

$C P$ violation from P violation

When fermions are included the picture changes
C conserving, CP violating interaction

$$
\begin{array}{ll}
\bar{\psi} \psi & C \text { even } P \text { even } \rightarrow C P \text { even } \\
\bar{\psi} \gamma_{5} \psi & C \text { even } P \text { odd } \rightarrow C P \text { odd }
\end{array}
$$

$\bar{\psi}\left(a+i b \gamma_{5}\right) \psi \phi$

To probe this type of CP-violation we need one Higgs only.

$$
p p \rightarrow(h \rightarrow \gamma \gamma) \bar{t} t
$$

Consistent with the SM. Pure CP-odd coupling excluded at 3.9σ, and $|a|>43^{\circ}$ excluded at $95 \% \mathrm{CL}$.

	$\mathscr{L}_{\text {tith }}^{C P V}=-\frac{y_{f}}{\sqrt{2}} \bar{t}\left(\kappa_{t}+i \tilde{\kappa}_{t} \gamma_{5}\right) t h \quad \begin{aligned} & \kappa_{t}=\kappa \cos \alpha \\ & \tilde{\kappa}_{t}=\kappa \sin \alpha \end{aligned}$ Rates alone already constrained a lot the CP-odd component.

Measurement of CPV angle in TTh

$$
p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
$$

$$
\mathscr{L}_{\bar{\tau} \tau h}^{C P V}=-\frac{y_{f}}{\sqrt{2}} \bar{\tau}\left(\kappa_{\tau}+i \tilde{\kappa}_{\tau} \gamma_{5}\right) \tau h
$$

Mixing angle between $C P$-even and $C P$-odd T Yukawa couplings measured $4 \pm 17^{\circ}$, compared to an expected uncertainty of $\pm 23^{\circ}$ at the 68% confidence level, while at the 95% confidence level the observed (expected) uncertainties were $\pm 36^{\circ}(\pm 55)^{\circ}$. Compatible with SM predictions.

CMS COLLABORATION, CM'S-PAS-HIG-20-006

Nothing is planned for the remaining fermions!

$C P$ violation from P violation (but strange!)

There is a different way to look at the same problem

$$
\alpha_{1}=\pi / 2
$$

$$
\begin{array}{llll}
\bar{t}\left(a_{t}+i b_{t} \gamma_{5}\right) t \phi & b_{t} \approx 0 & a_{t} \bar{t} t \phi & \text { Scalar } \\
\bar{\tau}\left(a_{\tau}+i b_{\tau} \gamma_{5}\right) \tau \phi & a_{\tau} \approx 0 & b_{\tau} \bar{\tau} \tau \phi & \text { Pseudoscalar }
\end{array}
$$

If an experiment can tell us that ϕ couples approximately as scalar do top quarks and as a pseudoscalar to tau leptons, it is a sign of CP-violation.

$$
g_{C 2 H D M}^{h V V}=\cos \alpha_{2} \cos \left(\beta-\alpha_{1}\right) g_{S M}^{h V V}
$$

$$
\begin{aligned}
& g_{C 2 H D M}^{h V V}=\cos \alpha_{2} \cos \left(\beta-\alpha_{1}\right) g_{S M}^{h V V} \\
& g_{C 2 H D M}^{h u u}=\left(\cos \alpha_{2} \frac{\sin \alpha_{1}}{\sin \beta}-i \frac{\sin \alpha_{2}}{\tan \beta} \gamma_{5}\right) g_{S M}^{h f f} \\
& g_{C 2 H D M}^{h b b}=\left(\cos \alpha_{2} \frac{\cos \alpha_{1}}{\cos \beta}-i \sin \alpha_{2} \tan \beta \gamma_{5}\right) g_{S M}^{h f f}
\end{aligned}
$$

Experiment tells us

Can be large

$$
\frac{\sin \alpha_{2}}{\tan \beta} \ll 1 \quad \text { But } \quad \sin \alpha_{2} \tan \beta=\mathcal{O}(1)
$$

CP violation from P violation (but strange!)

Find two particles of the same mass one produced in Association with tops as CP-eyen

$$
h_{2}=H ; p p \rightarrow H t \bar{t}
$$

and the other decaying to taus as $C P$-odd

$$
h_{2}=A \rightarrow \tau^{+} \tau^{-}
$$

$$
\begin{gathered}
Y_{C 2 H D M}=a_{F}+i \gamma_{5} b_{F} \\
b_{U} \approx 0 ; a_{D} \approx 0
\end{gathered}
$$

A Type II model where H_{2} is the SM-like Higgs.

With the latest EDM result Type 2, h2=h125

Measurement of CPV angle in TTh

$$
p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
$$

$$
\mathscr{L}_{\tau \tau h}^{C P V}=-\frac{y_{f}}{\sqrt{2}} \bar{\tau}\left(\kappa_{\tau}+i \tilde{\kappa}_{\tau} \gamma_{5}\right) \tau h
$$

Mixing angle between CP-even and CP-odd т Yukawa couplings measured $4 \pm 17^{\circ}$, compared to an expected uncertainty of $\pm 23^{\circ}$ at the 68% confidence level, while at the 95% confidence level the observed (expected) uncertainties were $\pm 36^{\circ}(\pm 55)^{\circ}$. Compatible with SM predictions.

$C P$ violation from P violation (but strange!)

LHC (direct) experiments give us information beyond

EDMs.

Find two particles with the same mass, one produced CP-even associated with tops

$$
h_{2}=H ; p p \rightarrow H t \bar{t}
$$

and the other decaying to taus as CP-odd

$$
h_{2}=A \rightarrow \tau^{+} \tau^{-}
$$

Probing one Yukawa coupling is not enough!

CP-violation from loops

CP violation from loops (hWW)

PRESENT EXPERIMENTAL BOUND
FROM ATLAS AND CMS

CMS COLLABORATION, PRD100 (2019) 112002.
ATLAS COLLABORATION, EPJC 76 (2016) 658.
THE SM CONTRIBUTION SHOULD BE PROPORTIONAL TO THE JARLSKOG INVARIANT J = IM (V $\left.V_{U D} V_{C D}{ }^{*} V_{C S} V_{C D}^{*}\right)=3.00 \times 10^{-5}$. THECPV HV'+ \mathbf{V}^{-}VERTEX CAN ONLY BE GENERATED AT TWO-LOOP.

CP violation from loops (hWW)

THE C2HDM
Starting with $f=\dagger$ and $f^{\prime}=b$
Is it worth it?

$$
i \mathcal{M}_{t b}^{\mathrm{C} 2 \mathrm{HDM}} \sim \frac{i g^{2} N_{c} c_{t}^{o}}{16 \pi^{2} v} \frac{m_{t}^{2}}{m_{W}^{2}}\left|V_{t b}\right|^{2} \epsilon_{\mu \nu \rho \sigma} k_{1}^{\rho} k_{2}^{\sigma} \mathcal{I}_{1}\left(\frac{m_{t}^{2}}{m_{W}^{2}}, \frac{m_{b}^{2}}{m_{W}^{2}}\right)_{\mathcal{I}_{1}(x, y) \equiv \int_{0}^{1} d \alpha \frac{\alpha^{2}}{\alpha x+(1-\alpha) y-\alpha(1-\alpha)}}
$$

And because $f=b$ and $f^{\prime}=t$ can also contribute, the final result is

$$
\left.c_{\mathrm{CPV}}^{\mathrm{C} 2 \mathrm{HDM}}=\frac{N_{c} g^{2}}{32 \pi^{2}}\left|V_{t b}\right|^{2} \frac{c_{t}^{o} m_{t}^{2}}{m_{W}^{2}} \mathcal{I}_{1}\left(\frac{m_{t}^{2}}{m_{W}^{2}}, \frac{m_{b}^{2}}{m_{W}^{2}}\right)+\frac{c_{b}^{o} m_{b}^{2}}{m_{W}^{2}} \mathcal{I}_{1}\left(\frac{m_{b}^{2}}{m_{W}^{2}}, \frac{m_{t}^{2}}{m_{W}^{2}}\right)\right]
$$

$$
C_{\mathrm{CPV}}=2 \frac{\frac{a_{3}^{W^{+}+w^{-}}}{a_{1}^{w^{+} W^{-}}}}{}
$$

$$
c_{\mathrm{CPV}}^{\mathrm{C} 2 \mathrm{HDM}} \simeq 6.6 \times 10^{-4} \sim \mathcal{O}\left(10^{-3}\right)
$$

USING ALL EXPERIMENTAL (AND THEORETICAL) BOUNDS

Sensitivity projections for future colliders (hWW)

Table 10: Summary of the 95% CL intervals for $f_{a 3} \cos \left(\phi_{a 3}\right)$, under the assumption $\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}$,
_ and for Γ_{H} under the assumption $f_{a i}=0$ for projections at $3000 \mathrm{fb}^{-1}$. Constraints on $f_{a 3} \cos \left(\phi_{a 3}\right)$ are multiplied by 10^{4}. Values are given for scenarios S 1 (with Run 2 systematic uncertainties [47]) and the approximate S2 scenario, as described in the text.

Parameter	Scenario	Projected 95\% CL interval
$f_{a 3} \cos \left(\phi_{a 3}\right) \times 10^{4}$	S1, only on-shell	$[-1.8,1.8]$
$f_{a 3} \cos \left(\phi_{a 3}\right) \times 10^{4}$	S1, on-shell and off-shell	$[-1.6,1.6]$
$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	S 1	$[2.0,6.1]$
$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	S 2	$[2.0,6.0]$

$$
\gamma / \kappa=c_{z}=\mathcal{O}\left(10^{-2}\right)
$$

SLIDE FROM KEISUKE FUJII'S PRESENTATION AT HIGGS COUPLINGS 2018 , TOKYO
$\underset{3 \text {-parameter fit }}{\text { Anomalous } Z Z H / y Z H \text { couplings }}$

$$
\mathcal{L}_{Z Z H}=M_{Z}^{2}\left(\frac{1}{v}+\frac{a_{Z}}{\Lambda}\right) Z_{\mu} Z^{\mu} H+\frac{b_{Z}}{2 \Lambda} \hat{\delta}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\tilde{b}_{Z}}{2 \Lambda} \hat{\mathcal{Z}}_{\mu \mu} \tilde{\tilde{Z}}^{\mu \nu}{ }_{H}{ }_{(\Lambda=1 \mathrm{TeV})}
$$

5-parameter tit $\quad Z H+Z Z$ at $250+500 \mathrm{GeV}$ with $H 20$

$$
\begin{aligned}
& \zeta_{z z}= \pm 0.0067 \\
& \begin{array}{l}
\text { ZZH / yZH structures } \\
\text { can be measured to } \sim 0.5
\end{array}
\end{aligned}
$$

$\left\{\begin{array}{l}\zeta_{z z}= \pm 0.0067 \\ \zeta_{A z}= \pm 0.0024 \\ \zeta_{2}\end{array}\right.$
$\begin{aligned} & \zeta_{Z}= \pm 0.0024, \\ & \tilde{\zeta}_{Z Z}= \pm 0.0109\end{aligned}$

Most comprehensive study performed for the ILC. The work presents results are for polarised beams $\mathrm{P}\left(\mathrm{e}^{-}, \mathrm{e}^{+}\right)$ $=(-80 \%, 30 \%)$ and two CM energies 250 GeV (and an integrated luminosity of $250 \mathrm{fb}^{-1}$) and 500 GeV (and an integrated luminosity $500 \mathrm{fb}^{-1}$).

Limits obtained for an energy of 250 GeV were $\mathrm{c}^{\mathrm{W}}{ }_{\mathrm{CPV}} \in[-0.321,0.323]$ and $\mathrm{c}^{\mathrm{Z}}{ }_{\mathrm{CPV}} \in[-0.016,0.016]$. For 500 GeV we get $\mathrm{c}^{\mathrm{W}}{ }_{\mathrm{CPV}} \in[-0.063,0.062]$ and $\mathrm{c}^{\mathrm{Z}}{ }_{\mathrm{CPV}} \in[-0.0057,0.0057]$.

THEREFORE MODELS SUCH AS THE C2HDM MAY BE (BARELY) WITHIN THE REACH OF these machines. CAN be used to constraint the C2HDM at loop-level

CP violation from loops (ZZZ)

Another possibility of detecting P -even CP-violating signals is via loops. Remember CPviolation could be seen via the combination

$$
\begin{array}{ll}
h_{2} \rightarrow h_{1} Z & C P\left(h_{2}\right)=-C P\left(h_{1}\right) \\
h_{3} \rightarrow h_{1} Z & C P\left(h_{3}\right)=-C P\left(h_{1}\right) \\
h_{3} \rightarrow h_{2} Z & C P\left(h_{3}\right)=-C P\left(h_{2}\right)
\end{array}
$$

So we can take these three processes and build a nice Feynman diagram

And see if it is possible to extract information from the measurement of the triple ZZZ anomalous coupling.

CP violation from loops (ZZZ)

The most general form of the vertex includes a P-even CP-violating term of the form

$$
i \Gamma_{\mu \alpha \beta}=-e \frac{p_{1}^{2}-m_{Z}^{2}}{m_{Z}^{2}} f_{4}^{Z}\left(g_{\mu \alpha} p_{2, \beta}+g_{\mu \beta} p_{3, \alpha}\right)+\ldots
$$

CMS COLLABORATION, EPJC78 (2018) 165.

$$
\begin{aligned}
& -1.2 \times 10^{-3}<f_{4}^{Z}<1.0 \times 10^{-3} \\
& -1.5 \times 10^{-3}<f_{4}^{Z}<1.5 \times 10^{-3}
\end{aligned}
$$

Also available for invisible scalars

Two doublets + one singlet and one exact Z_{2} symmetry

$$
\Phi_{1} \rightarrow \Phi_{1}, \quad \Phi_{2} \rightarrow-\Phi_{2}, \quad \Phi_{S} \rightarrow-\Phi_{S}
$$

with the most general renormalizable potential

$$
\begin{aligned}
V= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}+\left(A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S}+h . c .\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+h . c .\right]+\frac{m_{S}^{2}}{2} \Phi_{S}^{2}+\frac{\lambda_{6}}{4} \Phi_{S}^{4}+\frac{\lambda_{7}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right) \Phi_{S}^{2}+\frac{\lambda_{8}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \Phi_{S}^{2}
\end{aligned}
$$

and the vacuum preserves the symmetry

$$
\Phi_{1}=\binom{G^{+}}{\frac{1}{\sqrt{2}}\left(v+h+i G_{0}\right)} \quad \Phi_{2}=\binom{H^{+}}{\frac{1}{\sqrt{2}}(\rho+i \eta)} \quad \Phi_{S}=\rho_{S}
$$

The potential is invariant under the CP-symmetry

$$
\Phi_{1}^{C P}(t, \vec{r})=\Phi_{1}^{*}(t,-\vec{r}), \quad \Phi_{2}^{C P}(t, \vec{r})=\Phi_{2}^{*}(t,-\vec{r}), \quad \Phi_{S}^{C P}(t, \vec{r})=\Phi_{S}(t,-\vec{r})
$$

except for the term $\left(A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S}+h . c.\right)$ for complex A

Also available for invisible scalars

In our model it has the simple expression

$$
f_{4}^{Z}\left(p_{1}^{2}\right)=-\frac{2 \alpha}{\pi s_{2 \theta_{W}}^{3}} \frac{m_{Z}^{2}}{p_{1}^{2}-m_{Z}^{2}} f_{123} \sum_{i, j, k} \epsilon_{i j k} C_{001}\left(p_{1}^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{i}^{2}, m_{j}^{2}, m_{k}^{2}\right) \quad f_{123}=R_{13} R_{23} R_{33}
$$

The form factor f_{4} normalised to f_{123} for $m_{1}=80.5$ $\mathrm{GeV}, m_{2}=162.9 \mathrm{GeV}$ and $m_{3}=256.9 \mathrm{GeV}$ as a function of the squared off-shell Z-boson 4momentum, normalised to $\mathrm{m}_{z}{ }^{2}$.

But the bounds we have from present measurements by ATLAS and CMS, show that we are still two orders of magnitude away from what is needed to probe these models. 3HDMs may get us closer.

$C P$ and the scalar extension

Let us consider again the singlet extension - the $S M$ plus a $Y=0$ complex singlet $\Phi_{S}=(S+i A)$ with a symmetry $A \rightarrow-A$. There is a CP transformation

$$
\Phi_{S} \rightarrow \Phi_{S}^{*} \quad \Rightarrow \quad A \rightarrow-A
$$

so, if A would get a VEV, CP would be broken. However the potential has 2 CP symmetries

$$
\begin{array}{ll}
\Phi \rightarrow \Phi^{*} & \Phi_{S} \rightarrow \Phi_{S}^{*} \\
\Phi \rightarrow \Phi^{*} & \Phi_{S} \rightarrow \Phi_{S} \tag{2}
\end{array}
$$

Symmetry (2) can be seen as a CP symmetry as long as no new fermions are added to the theory.

Therefore even if (1) is broken there is still one unbroken CP symmetry (2) and the model is $C P$-conserving.

Transformation (2) ceases to be a CP transformation with e.g. the introduction of vector-like quarks.

CP and the scalar extension

There is another way (more algebraical) to look at the problem. You have two scalar fields

$$
\Phi=\frac{1}{\sqrt{2}}\binom{0}{h_{D}} ; \quad \Phi_{S}=(S+i A)
$$

Forget for now about the singlet and write all the terms where scalars appear except for the potential. The Yukawa Lagrangian gives you terms of the form

$$
\bar{f} f h_{D}
$$

The kinetic scalar Lagrangian gives you terms of the form

$V V h_{D}$

So h_{D} is CP-even. Now from the potential you only find the mass eigenstates for the scalars, h_{1}, h_{2}, h_{3} and you rotate

$$
h_{D}=a_{1} h_{1}+a_{2} h_{2}+a_{3} h_{3}
$$

and so h_{1}, h_{2}, h_{3} have the same CP h_{D}.

JOHANN RAFELSKI

 BERNDT MÜLLER
THE STRUCTURED VACUUM THINKING ABOUT NOTHING

The Vacuum and the Laws of Nature

R: But is understanding of the vacuum important in order to understand the laws of physics?
M: Indeed so. The surprising thing that we rave learnt
in the last decade is that the vacuum is very important
in understanding the laws of physics and that it comes
in addition to the laws of physics. You may have the same set of laws of physics operating in a different vacuum and they would describe very different phenomena.

Charge breaking in the SM

You start with

$$
<\Phi_{S M}>=\binom{0}{v} \quad Q_{S M}<\Phi_{S M}>=\left(I_{3}+\frac{Y}{2}\right)<\Phi_{S M}>=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{0}{v}=0
$$

But you could have started with

$$
<\Phi_{S M}>=\binom{v_{1}+i v_{2}}{v_{3}+i v_{4}} \quad \text { Now use the kinetic scalar term }
$$

and you find the mass spectrum (for the gauge bosons)

$$
\begin{aligned}
& m_{1}^{2}=m_{2}^{2}=\frac{g^{2} v^{2}}{4} \quad v^{2}=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2} \\
& m_{3}^{2}==\frac{v^{2}}{4}\left(g^{2}+g^{2} Y^{2}\right) \quad \text { So } U(1) \\
& \vdots \ldots \ldots \ldots \ldots \\
& \vdots \ldots \ldots \ldots \ldots!m_{4}^{2}=0 \\
& \hdashline \ldots \ldots \ldots \text { It's the photon }
\end{aligned}
$$

So $U(1)$ survives and charge is always conserved. Is this obvious?

$C B$ and $C P$ breaking in the $S M$

Yes because you can use the $S U(2)$ freedom to perform the rotation

$$
\left\langle\Phi_{S M}\right\rangle=\binom{v_{1}+i v_{2}}{v_{3}+i v_{4}} \quad \rightarrow \quad\left\langle\Phi_{S M}\right\rangle=\binom{0}{v}
$$

Using a more general vacuum would just mean to redefine the charge operator.
For the same reason any phase in the vacuum can be rotated away. This means that no spontaneous CP can occur. And the potential is also explicitly CP conserving.

The $S M$ has no $C B$ and no $C P$ violation in the potential.

The result also holds for any extension with singlets with $Y=0$ because they do not contribute to the mass matrix of the gauge bosons (CP case discussed previously).

CB in the 2HDM

Let us move to the 2HDM. Now we have 2 doublets and 8 possible VEVs

$$
<\Phi_{k}>=\binom{v_{1}^{k}+i v_{2}^{k}}{v_{3}^{k}+i v_{4}^{k}}
$$

We can use the $S U(2) \times U(1)$ freedom to write the most general form for the vacuum

$$
<\Phi_{1}>=\binom{v_{a}}{v_{b}} \quad<\Phi_{2}>=\binom{0}{v_{c} e^{i \theta}}
$$

and you find the mass spectrum (for the gauge bosons)

$$
\begin{aligned}
& m_{1}^{2}=m_{2}^{2}=\frac{g^{2} v^{2}}{4} \quad v^{2}=v_{a}^{2}+v_{b}^{2}+v_{c}^{2} \\
& m_{3}^{2}==\frac{1}{8}\left[v^{2}\left(g^{2}+g^{\prime 2} Y^{2}\right)+\sqrt{v^{4}\left(g^{2}+g^{\prime 2} Y^{2}\right)^{2}-16 g^{2} g^{2} v_{a}^{2} v_{c}^{2} Y^{2}}\right] \\
& \begin{array}{c}
\vdots \\
\vdots \\
m_{4}^{2}= \\
8
\end{array}\left[v^{2}\left(g^{2}+g^{2} Y^{2}\right)-\sqrt{v^{4}\left(g^{2}+g^{2} Y^{2}\right)^{2}-16 g^{2} g^{2} v_{a}^{2} v_{c}^{2} Y^{2}}\right] \vdots \vdots \\
& \text { Is it the photon? }
\end{aligned}
$$

CB in the 2HDM

Let us have a closer look at the photon mass

$$
m_{4}^{2}=\frac{1}{8}\left[v^{2}\left(g^{2}+g^{2} Y^{2}\right)-\sqrt{v^{4}\left(g^{2}+g^{2} Y^{2}\right)^{2}-16 g^{2} g^{2} v_{a}^{2} v_{c}^{2} Y^{2}}\right]
$$

There are two ways to recover a zero mass for the photon

$$
\left.\begin{array}{lll}
v_{c}=0 \Rightarrow & <\Phi_{1}>=\binom{v_{a}}{v_{b}} & <\Phi_{2}>=\binom{0}{0}
\end{array} \quad \square\right\rangle \mathrm{SM} \quad \begin{array}{cc}
\\
v_{a}=0 & \Rightarrow
\end{array}
$$

OR ELSE CHARGE IS BROKEN - POSSIBLE IN THE 2HDM

Vacua in the 2HDM

The Z2 softly broken 2HDM

$$
\begin{aligned}
V= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}-m_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+h . c .\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+h . c .\right]
\end{aligned}
$$

explicitly CP-conserving because $\mathrm{m}^{2}{ }_{12}$ and λ_{5} are real.
The most general vacuum structure is

$$
\left\langle\Phi_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{1}} ; \quad\left\langle\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{v_{c b}}{v_{2}+i v_{c p}}
$$

- CP conserving (N)

$$
\left\langle\Phi_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{1}} ; \quad\left\langle\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{2}}
$$

- Charge breaking (CB)

$$
\left\langle\Phi_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{1}^{\prime}} ; \quad\left\langle\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{\alpha}{v_{2}^{\prime}}
$$

- CP breaking (CP)

$$
\left\langle\Phi_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{1}^{\prime}+i \delta} ; \quad\left\langle\Phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{2}^{\prime}}
$$

Compare minima

1. Start by writing the potential, which for the 2 HDM is just a function $V\left(\Phi_{1}, \Phi_{2}\right)$
2. Find the stationary points (SP) of V
3. Classify the SP (minima, saddle points, maxima) - look at the values of the squared masses
4. You will find three types of SP - the CP-conserving (aka normal), the charge breaking and the CP breaking ones
5. You just have to write the potential at each SP and call it $V_{N}, V_{C B}$ and $V_{C P}$, respectively
6. Compare the depths of the different V at each $S P$

Vacua in the 2HDM

After some time you find

$$
V_{C B}-V_{\mathcal{N}}=\frac{m_{H^{ \pm}}^{2}}{2 v^{2}}\left[\left(v_{2} v_{1}^{\prime}-v_{1} v_{2}^{\prime}\right)^{2}+v_{1}^{2} \alpha^{2}\right] \quad \begin{aligned}
& \text { Difference of the values of the potential at the } \\
& \text { CB SP and at the } \mathrm{N} \mathrm{SP}
\end{aligned}
$$

If N is a minimum (note that the charged Higgs mass is calculated at the N SP)

$$
V_{C B}-V_{\mathcal{N}}=\frac{m_{H^{ \pm}}^{2}}{2 v^{2}}\left[\left(v_{2} v_{1}^{\prime}-v_{1} v_{2}^{\prime}\right)^{2}+v_{1}^{2} \alpha^{2}\right]>0
$$

We get

$$
V_{\mathcal{N}}<V_{C B}
$$

It can also be shown that not only the N minimum is below the $C B S P$, but the $C B S P$ is a saddle point.

Valid for the most general 2HDM

A similar result holds for the simultaneous existence of a N and a CP breaking minima.

$$
V_{C B}-V_{\mathcal{N}}=\frac{m_{A}^{2}}{2 v^{2}}\left[\left(v_{2} v_{1}^{\prime}-v_{1} v_{2}^{\prime}\right)^{2}+v_{1}^{2} \delta^{2}\right]
$$

Vacua in the 2HDM

Vacua in the 2HDM (at tree-level) - all spontaneous

1. 2 HDM have at most two minima
2. Minima of different nature never coexist
3. Unlike Normal, CB and CP minima are uniquely determined
4. If a 2HDM has only one normal minimum, it is the absolute minimum - all other SP if they exist are saddle points
5. If a 2 HDM has a CP-breaking minimum, it is the absolute minimum - all other SP if they exist are saddle points

But there is still the possibility of having two CP-conserving minima!

Vacua in the 2HDM

Two normal minima - potential with the soft breaking term

$y=329 \mathrm{GeV}$
However, two CP-conserving minima can coexist - we can force the potential to be in the global one by using a simple condition.

$$
\begin{array}{ll}
\mathrm{D}=m_{12}^{2}\left(m_{11}^{2}-k^{2} m_{22}^{2}\right)(\tan \beta-k) \quad k=\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{1 / 4} & \begin{array}{l}
\text { Our vacuum is the global } \\
\text { minimum of the potential } \\
\text { if and only if } \mathrm{D}>0 .
\end{array} \\
D=\frac{1}{8 v^{8} s_{\beta}^{4} c_{\beta}^{2}}\left(-a_{1} \mu^{2}+b_{1}\right)\left(a_{2} \mu^{2}-2 b_{2}\right) &
\end{array}
$$

From 2 to infinity

The most general potential for an NHDM is

$$
V=\mu_{i j}^{2}\left(\Phi_{i}^{\dagger} \Phi_{j}\right)+\lambda_{i j k l}\left(\Phi_{i}^{\dagger} \Phi_{j}\right)\left(\Phi_{k}^{\dagger} \Phi_{l}\right)
$$

where the indices range from 1 to N and the parameters can be complex.

We have shown that a basis can be chosen such that the comparison between SP reduces to the case of 3 doublets for charge breaking and to the 2HDM case for CP breaking. So the main results are:

- In a NHDM CB minima can coexist with CP-conserving ones - the $2 H D M$ is a very peculiar model
- In a NHDM CP minima cannot coexist with CP-conserving ones - the 2HDM result holds for an arbitrary number of doublets

Conclusions

B It is now clear that an extended scalar sector may indeed improve your life

- It provides DM
- It provides new sources of CP-violation
* It is testable at the LHC and future colliders

Summing it all, it provides countless hours of fun for both Professors and Students

