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24Outline

● Introduction to light nuclei production models

● Result
– Deuteron production yields
– First measurements of event-by-event antideuteron fluctuations in heavy-ion collisions

● Future perspectives and summary

Sourav Kundu, CERN

(based on new ALICE measurements: arXiv:2204.10166)
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24Why heavy-ion collisions?

● One of the goals is to characterize the phase diagram of QCD matter

● Quark–gluon plasma: deconfined phase of quarks and gluons

● Phase transition at LHC (low baryonic density region)
– smooth crossover: similar to early universe (~few μs after the Big Bang)

https://cds.cern.ch/record/2025215 A. Bazavov et al. (HotQCD Collaboration) Phys. Rev. D 90 (2014) 094503

Sourav Kundu, CERN
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24Time evolution of heavy-ion collision

Sourav Kundu, CERN
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24

Sourav Kundu, CERN

● Hadronization process not well understood
 
– in-vacuum fragmentation does not     

           describe the hadronization in such    
           high-partonic density environment

– phenomenological models are used

Hadronization

d
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24Statistical hadronization model

Sourav Kundu, CERN

● Assumptions:
         – Thermal equilibrium
         – Point-like hadrons
         – Conservation laws applied on average

● Primordial yields + feed-down from high-mass states

● Model parameters: Tchem, μB and V

● Hadron yields at chemical freeze-out (hadron abundances are 
fixed) calculated using the Grand Canonical partition function:
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24Statistical hadronization model

Sourav Kundu, CERN

A. Andronic et al., Nature vol. 561, (2018) 321
HotQCD Collaboration, Phys, Lett. B 795 (2019) 15

● Assumptions:
         – Thermal equilibrium
         – Point-like hadrons
         – Conservation laws applied on average

● Primordial yields + feed-down from high-mass states

● Model parameters: Tchem, μB and V

● Tchem = 156.5 ± 1.5 MeV → Tchem ≈ Tpc

● Chemical freeze-out close to phase boundary

● Hadron yields at chemical freeze-out (hadron abundances are 
fixed) calculated using the Grand Canonical partition function:
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24Statistical hadronization model

● Hadron yields at chemical freeze-out (hadron abundances are 
fixed) calculated using the Grand Canonical partition function:

● Model parameters: Tchem, μB and V

● Tchem = 156.5 ± 1.5 MeV → Tchem ≈ Tpc

● Chemical freeze-out close to phase boundary

 Agreement with the nuclei yields is surprising!
A. Andronic et al., Nature vol. 561, (2018) 321
HotQCD Collaboration, Phys, Lett. B 795 (2019) 15

● Assumptions:
         – Thermal equilibrium
         – Point like hadrons
         – Conservation laws applied on average

Sourav Kundu, CERN

● primordial yields + feed-down from high-mass states
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24Production of light (anti)nuclei

Hadronization for light nuclei is not well understood

Deuteron

Eb = 2.22 MeV

√⟨Rc
2⟩ = 2.13 fm

3He

Eb = 7.72 MeV

√⟨Rc
2⟩ = 1.96 fm

 

 

P. J. Mohr et al., Rev. Mod. Phys. 88 (2016) 035009

Nucl. Data Sheets 130, 1 (2015)

● Pseudocritical temperature (Tpc) is the average 
temperature at which phase transition occurs

● It is calculated from lattice QCD at vanishing 
baryo-chemical potential μB (matter = antimatter):

         Tpc = 156.5 ± 1.5 MeV

              HotQCD Collaboration, Phys, Lett. B 795 (2019) 15
              S. Borsanyi et al., Phys. Rev. Lett. 125 (2020) 052001

Sourav Kundu, CERN

p

p p

n

n Are such loosely-bound states also produced
at the phase transition with Tpc ≈ 156 MeV?
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24Coalescence model
● Bound states produced at phase boundary are destroyed by interactions in the hadron gas phase

● Nuclear clusters are formed at kinetic freeze-out by coalescence of nucleons (hyperons) if nucleons 
are close in phase space

● Simple Coalescence model: only momentum correlations are considered: Δpij = 0
○

 

Invariant yield
of nuclei Coalescence 

parameter
Invariant yield

of nucleon

J. Kapusta, Phys. Rev. C 21 (1980) 1301

Sourav Kundu, CERN
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24Coalescence model
● Bound states produced at phase boundary are destroyed by interactions in the hadron gas phase

● Nuclear clusters are formed at kinetic freeze-out by coalescence of nucleons (hyperons) if nucleons 
are close in phase-space

● Simple Coalescence model: only momentum correlations are considered: Δpij = 0
○

● Advanced Coalescence model: include source size R and finite size rd of the cluster, and kinetic 
freeze-out temperature Tk  

Invariant yield
of nuclei Coalescence 

parameter
Invariant yield

of nucleon

K.-J. Sun et al., Phys. Lett. B 792 (2019) 132

J. Kapusta, Phys. Rev. C 21 (1980) 1301

Sourav Kundu, CERN

B



S. Kundu (CERN)

F. Grosa (CERN) 

09

24The ALICE detector

Inner Tracking System (ITS)
● Tracking, vertexing 

Time Projection Chamber (TPC)
● Tracking and particle 

identification via dE/dx in
the TPC gas mixture

Time Of Flight (TOF)
● particle identification via 

velocity measurement

V0 Scintillators
● Trigger and centrality 

estimation

● Low material budget, excellent tracking and particle identification over broad momentum range:
         unique detector for nuclei measurements!

Inner
Tracking
System

Time
Projection
Chamber

Time
Of
Flight

V0

Sourav Kundu, CERN
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24Thermal vs. Coalescence: deuteron production yield

GCE

 AA collisions: 
● Produced system size larger than 

the size of deuteron
● d/p ratio vs, multiplicity ~ flat 

and reaches GCE limit
● Less discrimination power in AA collisions

ALICE, JHEP 01 (2022) 106

Sourav Kundu, CERN

Vc → volume in which baryons are correlated due to baryon number conservation
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24

GCE

 AA collisions: 
● Produced system size larger than 

the size of deuteron
● d/p ratio vs, multiplicity ~ flat 

and reaches GCE limit
● Less discrimination power in AA collisions

 Small system: 
● Produced system size comparable 

with the size of deuteron
● Smooth transition from pp to AA

– single description for the nucleosynthesis? 
● Suppression of d/p ratio at low multiplicity 

– Canonical Ensemble of SHM (CSM)
   → effect of baryon number conservation
– Coalescence model
   → finite size effect of deuteronBoth models give similar value of deuteron 

production yield across all the collision systems

ALICE, JHEP 01 (2022) 106

Sourav Kundu, CERN

Thermal vs. Coalescence: deuteron production yield

Vc → volume in which baryons are correlated due to baryon number conservation
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GCE

 AA collisions: 
● Produced system size larger than 

the size of deuteron
● d/p ratio vs, multiplicity ~ flat 

and reaches GCE limit
● Less discrimination power in AA collisions

 Small system: 
● Produced system size comparable 

with the size of deuteron
● Smooth transition from pp to AA

– single description for the nucleosynthesis? 
● Suppression of d/p ratio at low multiplicity 

– Canonical Ensemble of SHM (CSM)
   → effect of baryon number conservation
– Coalescence model
   → finite size effect of deuteronBoth model give similar value of deuteron production 

yield across all the collision systems

ALICE, JHEP 01 (2022) 106

Sourav Kundu, CERN

Thermal vs. Coalescence: deuteron production yield

Vc → volume in which baryons are correlated due to baryon number conservation

Need new observables to distinguish the nucleosynthesis model
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  Model parameters:
● Coalescence parameter B
● Average initial proton or neutron number

  Event-by-event deuteron distribution:

● GCE of Thermal model: Poisson

● Coalescence model: convolution of two Poisson distribution → deviation from Poisson

Fluctuation as a probe of deuteron synthesis 11

24

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906

Initial conditions in coalescence model:
● Model A: nucleons are correlated
● Model B: nucleons fluctuate independently

Sourav Kundu, CERN
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● Moments and cumulants are mathematical measures of “shape” of a distribution, which probes 
fluctuations of an observable.

Skewness  → asymmetry

Kurtosis  → sharpness

Higher-order cumulants: Analysed observable: 
κ2 / κ1→ 1 for Poisson distribution

proton(p)-deuteron(d) correlation

Sourav Kundu, CERN

ρpd = ⟨(np - ⟨np⟩)(nd - ⟨nd⟩)⟩ / √(κ2pκ2d)

κ1 = ⟨n⟩,       κ2 = ⟨(δn)2⟩        δn = n -  ⟨n⟩

κ3 = ⟨(δn)3⟩,  κ4 = ⟨(δn)4⟩ - 3⟨(δn)2⟩2 → 0 for GCE
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Choice of particle: Antiparticle instead of particle to avoid 
secondaries produced in detector material

Particle identification:

TPC: 0.8 < pT < 1.0 GeV/c (antideuteron)
         0.4 < pT < 0.6 GeV/c (antiproton)

TPC+TOF: 1.0 < pT < 1.8 GeV/c (antideuteron)
                  0.6 < pT < 0.9 GeV/c (antiproton)

● Antideuteron purity > 90%, antiproton purity > 95%

● Autocorrelation due to misidentification of antiproton as 
antideuteron is negligible due to separate pT acceptance 

Sourav Kundu, CERN
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● Efficiency correction depends on the event-by-event efficiency distributions.
         – ~binomial distribution

● MC closure test is performed to validate the method

T. Nonaka et al., Phys. Rev. C 95, (2017) 064912

Sourav Kundu, CERN

          M                         M = number of pT bins
 qn =  Σ (ni/εi

n)     ε = efficiency
          i=1              ni = raw counts in ith pT bin

κ2 = <q1
2> - <q1>

2+<q1>-<q2>

ρ = (<q1
dq1

p>-<q1
d><q1

p>) / √ (κ2
d κ2

p)

Binomial efficiency corrected cumulant:
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● Consistent with Poisson baseline 

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906
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● Consistent with Poisson baseline

● Simple Coalescence Model A (correlated nucleon 
distribution) over predicts data 

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

First antideuteron fluctuation measurement
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● Consistent with Poisson baseline

● Simple Coalescence Model A (correlated nucleon 
distribution) over predicts data

● Simple Coalescence Model B (independent 
nucleon distribution) over predicts data 

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

First antideuteron fluctuation measurement

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906
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● Consistent with Poisson baseline 

● Simple Coalescence Model A (correlated nucleon 
distribution) over predicts data

● Simple Coalescence Model B (independent 
nucleon distribution) over predicts data 

● Canonical Ensemble (CE) SHM consistent with 
data, no significant effect of baryon number 
conservation on κ2/κ1 ratio

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

First antideuteron fluctuation measurement

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906
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● Evidence of small negative correlation
– in events with at least one antideuteron, there 
are O(0.1%) less antiprotons than in an average
event

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906

ρpd = ⟨(np - ⟨np⟩)(nd - ⟨nd⟩)⟩ / √(κ2pκ2d)
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● Evidence of small negative correlation
– in events with at least one antideuteron, there 
are O(0.1%) less antiprotons than in an average
event

● Rules out Coalescence model with correlated 
production of nucleons
– isospin conservation in antiproton channel

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906
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● Evidence of small negative correlation
– in events with at least one antideuteron, there 
are O(0.1%) less antiprotons than in an average
event

● Rules out Coalescence model with correlated 
production of nucleons
– isospin conservation in antiproton channel

● Qualitatively explained by Coalescence model 
with independent fluctuation of nucleons

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906
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● Evidence of small negative correlation
– in events with at least one antideuteron, there 
are O(0.1%) less antiprotons than in an average
event

● Rules out Coalescence model with correlated 
production of nucleons
– isospin conservation in antiproton channel

● Qualitatively explained by Coalescence model 
with independent fluctuation of nucleons

● Coalescence model B ≃ CE SHM with large 
correlation volume

● None of model configurations quantitatively 
explain the data 

Sourav Kundu, CERN

ALICE, arXiv:2204.10166

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906
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● χ2 minimization is performed by varying the 
correlation volume in the SHM model

● Correlation volume of 1.6 ± 0.3 dV/dy best 
describes the data 

Sourav Kundu, CERN

ALICE, arXiv:2204.10166
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● χ2 minimization is performed by varying the 
correlation volume in the SHM model

● Correlation volume of 1.6 ± 0.3 dV/dy best 
describes the data 

A small correlation volume describes well deuteron
production yield across all collision systems 

Sourav Kundu, CERNALICE, arXiv:2204.10166

 Correlation length between nuclei and nucleon
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4.8 dV/dy

Smaller correlation length between antiproton and 
antideuteron compared to the correlation length 
between proton and antiproton

Sourav Kundu, CERNALICE, arXiv:2204.10166

V. Vovchenko et al., Phys. Rev. C 103, (2021) 044903
ALICE, Phys. Lett. B 807 (2020) 135564
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Sourav Kundu, CERN

● Long range rapidity correlation → originates at early time
● Short range rapidity correlation → originates at later time
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● Long range rapidity correlation → originates at early time
● Short range rapidity correlation → originates at later time
● Shape of the correlation function changes with correlation length

Sourav Kundu, CERN

increase in η acceptance 
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● Data: strong acceptance dependence of correlation strength
● SHM: describes data, strength depends on fraction of baryons in acceptance out of total produced baryons
● Coalescence: ~flat with acceptance, strength depends on the nucleon phase space density or d/p ratio

Sourav Kundu, CERN

ALICE, arXiv:2204.10166
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S. Kundu - QM 2022

● New Inner Tracking System: 
improved tracking at low pT and vertex resolution
→ high tracking efficiency at low pT

● Continuous readout system of the TPC using GEMs: 
will provide a factor 50 more statistics in Pb–Pb
→  O (109) Pb–Pb and O (1011) pp events

Improved statistics:
● Precise measurements of antideuteron fluctuation
● Higher-order correlations and cumulants
● A=3 nuclei and in measurements pp collisions
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● High statistics: O (109) Pb–Pb events
● Large acceptance → |η| < 4
● High PID purity

CERN-LHCC-2022-009 Allow precise mapping 
of correlation length 
between nuclei and 
nucleon

Sourav Kundu, CERN
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SHM:
● Simultaneously describes the κ2/κ1 ratio of antideuteron and its correlation with antiproton but with a 

much smaller correlation volume
→ New theory developments are needed for resolving this conundrum between proton and deuteron

             – partial chemical equilibrium or the implementation of the interaction of hadrons through phase-shift

Coalescence:
● Available coalescence model calculations do not simultaneously describe the antideuteron fluctuations 

and its correlation with antiproton

● Observables show a great sensitivity to the initial correlation between the antiproton and the antineutron 
which can be used for further development of these models

Sourav Kundu, CERN

Summary

Future
● ALICE2 and ALICE3 will provide an unique opportunity to extend these measurements to heavier 

antinuclei and to higher order correlation coefficients and cumulants

First measurement of event-by-event nuclei fluctuation and its correlation with nucleon in heavy-ion 
collisions gives additional testing ground for nucleosynthesis
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SHM:
● Simultaneously describes the κ2/κ1 ratio of antideuteron and its correlation with antiproton but with a 

much smaller correlation volume
→ New theory developments are needed to resolving this conundrum between proton and deuteron

             – partial chemical equilibrium or the implementation of the interaction of hadrons through phase-shift

Coalescence:
● Available coalescence model calculations do not simultaneously describes the antideuteron fluctuations 

and its correlation with antiproton

● Observables show a great sensitivity to the initial correlation between the antiproton and the antineutron 
which can be used for further development of these models

Sourav Kundu, CERN

Summary

Future
● ALICE2 and ALICE3 will provide an unique opportunity to extend these measurements to heavier 

antinuclei and to higher order correlation coefficients and cumulants

First measurement of event-by-event nuclei fluctuation and its correlation with nucleon in heavy-ion 
collisions gives additional testing ground for nucleosynthesis

Thank you for your attention
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● New Inner Tracking System: 
improved tracking at low pT and vertex resolution
→ high tracking efficiency at low pT

● Continuous readout system of the TPC using GEMs: 
will provide a factor 50 more statistics in Pb–Pb
→  O (109) Pb–Pb and O (1011) pp events

● Light ITS: significantly reduced material budget
         → negligible contribution of p and d from spallation

Reduced material budget:
● Difference between antiproton-antideuteron and

proton-antideuteron correlation

Source of correlation:
● antiproton-antideuteron: coalescence + conservation
● proton-antideuteron: conservation

Sourav Kundu, CERN
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Inner
Tracking
System

Time
Projection
Chamber

V0

(Anti)Nuclei identification

Time
Of
Flight

● At low momentum the specific energy loss measured by TPC provides excellent PID for deuterons
→ rel. σ dE/dx ~6.5% (in Pb–Pb collisions)

Sourav Kundu, CERN
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Inner
Tracking
System

Time
Projection
Chamber

V0

(Anti)Nuclei identification

Time
Of
Flight

● At high momentum the PID is performed using TOF to measure the β hence the mass of the particle
         → rel. σ TOF-PID ~ 65 ps in Pb–Pb collisions

Sourav Kundu, CERN
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Inner
Tracking
System

Time
Projection
Chamber

V0

(Anti)Nuclei identification

Time
Of
Flight

ALICE , Phys. Rev. C 102 (2020) 055203

Sourav Kundu, CERN

● At high momentum the PID is performed using TOF to measure the β hence the mass of the particle
         → rel. σ TOF-PID ~ 65 ps in Pb–Pb collisions
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  Model parameters:
● Coalescence parameter B
● Average initial proton or neutron number

<ni> = <np> + <nd>

– Average deuteron multiplicity: 

– Multiplicity distribution for a given number of initial nucleons:

– Final deuteron multiplicity distribution:

  Event by event deuteron distribution:
● Grand Canonical Ensemble (GCE) of Thermal model: Poisson

● Coalescence model: deviation from Poisson

Fluctuation as a probe of deuteron synthesis 16

33

Jan Steinheimer et al., Phys. Rev. C 93 , (2016) 054906

Model A: nucleons are correlated
Model B: nucleons fluctuate independently

Sourav Kundu, CERN
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33Coalescence model
● Bound states produced at phase boundary are destroyed by interactions in the hadron gas phase

● Nuclear clusters are formed at kinetic freeze-out by coalescence of nucleons (hyperons) if nucleons 
are close in phase space

● Simple Coalescence model: only momentum correlations are considered: Δpij = 0
○

● Advanced Coalescence model:  

Invariant yield
of nuclei Coalescence 

parameter
Invariant yield

of nucleon

spin-isospin
degeneracy factor

phase space 
distributions of nucleon

Wigner function 
of nuclei

Nuclei yield depends on source size R, finite size rd of the 
cluster and kinetic freeze-out temperature Tk

K.-J. Sun et al., Phys. Lett. B 792 (2019) 132

J. Kapusta, Phys. Rev. C 21 (1980) 1301

Sourav Kundu, CERN
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● Efficiency correction depends on the event-by-event efficiency distributions.
         – ~binomial distribution
         – MC closure test is performed to validate the method

Binomial efficiency corrected cumulant:

κ1 = <q1>

κ2 = <q1
2> - <q1>

2+<q1>-<q2>

κ11= <q1
dq1

p>-<q1
d><q1

p>

ρ = κ11 /√ (κ2
d κ2

p)

          M                         M = number of pT bins
 qn =  Σ (ni/εi

n)     ε = efficiency
          i=1              ni = raw counts in ith pT bin

T. Nonaka et al., Phys. Rev. C 95, (2017) 064912

HADES, Phys. Rev. C 102, (2020) 024914
Sourav Kundu, CERN
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● With the same correlation volume (Vc) proton over pion ratio is not reproduced at low multiplicity

Vc → volume in which baryons are correlated due to baryon number conservation

ALICE, JHEP 01 (2022) 106

Sourav Kundu, CERN

Thermal vs. Coalescence: A=2 nuclei
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● MUSIC+UrQMD+Coalescence: coupling 
coalescence to a hydrodynamical model with 
hadronic interactions in the final state

● Consistent with the data

● Difference is due to the method of conservation

– Simple coalescence: perturbative approach of 
nuclei production

– MUSIC+UrQMD+Coalescence: sequential 
production of nuclei

Sourav Kundu, CERN

ALICE, arXiv:2204.10166
K. -J. Sun et al., arXiv:2204.10879

First antideuteron fluctuation measurement
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● Evidence of small negative correlation
– in events with at least one antideuteron, there 
are O(0.1%) less antiproton than in an average
event

● Rules out Coalescence model with correlated 
production of nucleons
– isospin conservation in antiproton chanel

● Qualitatively explained by Coalescence model 
with independent fluctuation of nucleons

● MUSIC+UrQMD+Coalescence ≃ 
Coalescence model B

Sourav Kundu, CERNALICE, arXiv:2204.10166
K. -J. Sun et al., arXiv:2204.10879
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S. Kundu - QM 2022

 Thermal vs. Coalescence: A = 3 nuclei

ALICE, JHEP 01 (2022) 106

● Qualitatively described by both models
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● Qualitatively described by both models

● SHM: 3H/3He ~ 1 because of similar mass

● Coalescence: 3H/3He > 1 as r (3H) / r (3He) ~ 0.9

No conclusive evidence to distinguish between production mechanisms
Sourav Kundu, CERN

ALICE, JHEP 01 (2022) 106

 Thermal vs. Coalescence: A = 3 nuclei
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● Large radius of 3ΛHe in Coalescence 
model leads to a larger suppression in 
small system
→ good discriminating power between 
SHM and coalescence in small system
but not in AA collisions

ALICE, arXiv:2107.10627

Sourav Kundu, CERN

√⟨Rc
2⟩ = 4–5 fm

 Thermal vs. Coalescence: hypertriton
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● Large radius of 3ΛHe in Coalescence 
model leads to a larger suppression in 
small system
→ good discriminating power between 
SHM and coalescence in small system
but not in AA collisions

Open points in SHM:
● Hadrons are assumed as point-particle

● Large root-mean-square radius ∼ 4–5 fm > 
system volume in pp / p-Pb collisions ALICE, arXiv:2107.10627

Sourav Kundu, CERN

√⟨Rc
2⟩ = 4–5 fm

 Thermal vs. Coalescence: hypertriton
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Choice of particle: Antiparticle instead of particle to remove secondaries produced in detector material
Particle identification:
TPC: 0.8 < pT < 1.0 GeV/c (antideuteron)
         0.4 < pT < 0.6 GeV/c (antiproton)

TPC+TOF: 1.0 < pT < 1.8 GeV/c (antideuteron)
                  0.6 < pT < 0.9 GeV/c (antiproton)

● Antideuteron purity > 90%, antiproton purity > 95%

● Autocorrelation due to misidentification of antiproton as 
antideuteron is negligible due to separate pT acceptance 

ALICE, Phys. Rev. C 93 (2016) 024917

Sourav Kundu, CERN
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● Initial geometry and final-state 
multiplicity does not correspond 
one-to-one

● Volume fluctuations can be 
largely suppressed by centrality 
bin width correction (CBWC)

STAR, Phys. Rev. C 104, (2021) 024902

Sourav Kundu, CERN
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PYTHIA Strange Canonical Ensemble of Thermal model

V. Vovchenko et al., Phys. Rev. C 100, (2019) 054906

R. Nayak et al., Phys. Rev. D 100, (2019) 074023
● Both PYTHIA and Thermal model explain strangeness 

production in small system

What is the underlying reason of strangeness enhancement in small system?
Canonical suppression of open strange hadrons / the inclusion of baryon junction in rope hadronization

Perspectives for strangeness hadronization 

Sourav Kundu, CERN
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Lund string hadronization

● Production of strange 
hadrons is always 
associated with the 
production of 
antistrange hadron

● Negligible correlation 
between 2 strange or 
antistrange hadrons

Thermal model:
● Strangeness is conserved in a volume

Perspectives for strangeness hadronization 

Strangeness correlation can help to 
understand strange hadron production

Sourav Kundu, CERN
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33Summary of nuclei production yield

Heavy-ion collisions: all models give similar predictions for light and hypernuclei yields

→ Need to go beyond the yield measurements

Small system: models can be discriminated using nuclei of larger radius 

Sourav Kundu, CERN
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24Survival of light nuclei in hadron gas

Hadron gas is a very hostile environment for light nuclei (reminder: binding energy ≈ few MeV)

● typical hadronic momentum transfer > 100 MeV/c

λd should exceed ≈ 10-15 fm for deuteron survival!

From SAID database

τ = 0 fm/c
Hadronization

τ > 10 − 20 fm/c
wave function fully developed

● Light nuclei produced as 
compact (colorless)  quark systems 
> Negligible interaction with hadrons

● Formation time > τ hadronic phase

Assumptions:

Density at kinetic freeze-out
(when elastic interactions cease)

Sourav Kundu, CERN

http://gwdac.phys.gwu.edu
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