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Overview

● Recap: What is DIRAC and how does it fit in within the 
SWIFT-HEP remit?

● Status
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DIRAC

● DIRAC is a software originally developed by LHCb. The DIRAC 
consortium was founded in 2014 to enable adoption by other 
communities. (The UK is a member of this consortium via 
Imperial College.)

● DIRAC comprises of:
○ Workload Management System
○ File Catalog/Data Management System
○ Workflow Management System
○ Documentation: https://dirac.readthedocs.io/en/latest/

● Provides a standardised user interface to multiple compute 
(grid & cloud) and storage resources.
○ It has always had an auto stage-in for input data  from other 

sites (“the original data lake”) 
● Written in Python (for Linux)

○ Open Source: https://github.com/DIRACGrid/DIRAC
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DIRAC Schematic (for reference) 
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DIRAC Users

● Comprised of HEP and non-HEP communities:
○ HEP: LHCb, NA62, Belle2, ILC/Calice, mu3e
○ Neutrinos: T2K, HyperK, JUNO, SoLid
○ Phenomenology: Pheno (Durham)
○ Dark Matter: LZ
○ Astronomy: CTA, LSST, Auger
○ Biological sciences

● Swift-HEP work is on the DIRAC core software, which is 
used by all communities.

● GridPP provides a DIRAC instance as a service to the 
non-LHC communities it supports.

● DIRAC is very much a here and now project, but it needs 
adapting for the future.
○ SWIFT-HEP only represents a subset of ongoing work.
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SWIFT-HEP: In the grand scheme of things
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WP1.5 Pilot Log System

● Pilot jobs:
○ Check the worker-node environment 
○ Can stage required input/output files 
○ Start and supervise the user job (record memory usage, efficiency, etc.)

● The pilot logs are crucial for diagnosing problems.

● Pilot job logs are stored in an technology dependent way at the execution resources
● Retention policies vary by technology and site:

○ Some logs only kept while job running!
○ Others kept 3 days - 1 month depending on configuration.
○ Transient (cloud) resources may not have space suitable for archiving these logs.

● Log can be completely lost in cases where job crashes (i.e. exceeding batch limits).
● Retaining pilot job logs in a reliable, resource independent manner was identified as a 

high priority issue by LHCb and other communities. 
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WP1.5 Pilot Log System: Implementation
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● Develop a central pilot log 
store and allow the pilot jobs 
to write logs there directly, 
therefore removing any 
resource dependencies.

● At peak times this service 
needs to cope with a large 
amount of traffic in a 
fault-tolerant way.
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Pilot Log System Status - technical
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Code
DIRAC server:
https://github.com/DIRACGrid/DIRAC/p
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WP 1.8 DIRAC High Level Commands

● Target is medium size communities 
without (much) dedicated computing 
support.

● These communities often already use 
the DIRAC File Catalogue and basic 
DIRAC data management tools, so 
the threshold for adoption is quite low.

● Develop tools for the most common 
use cases and make them available 
to all users as part of DIRAC, e.g.
○ Importing existing data into the file 

catalogue.
○ Copying directories from one storage 

element to another.
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WP 1.8 DIRAC High Level Commands

● Turns out we aren’t the only ones whose users would like 
these facilities.

● Teamed up with EGI to merge the various bits of code and 
integrate them into core DIRAC

● https://github.com/DIRACGrid/DIRAC/pull/6403
● Close to being merged.

11

https://github.com/DIRACGrid/DIRAC/pull/6403


WP1.7 DIRAC Workload Management - Plans

● Current load management system fairly basic:
○ Jobs bound to sites quite early in 

submission process.
○ Target site immutable after 

submission and binding.
● Not flexible enough for large infrastructures, 

e.g.:
○ Unexpected changes in target site 

capacities (both up and down).
○ Misunderstandings lead to users 

submitting large batches of jobs to 
unsuitable target.

● Develop a manual control for admin with a view 
to automate this in the future.
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WP1.7 DIRAC Workload Management

● Low(er) priority:
○ no recent problems seen

● Status
○ might not be implementable as originally envisaged
○ code state best described as “collection of hacks”

● We might have to rethink that one:
○ Looking at solutions we can implement as an add-on to the core 

DIRAC project, rather than integrating it 
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WP 1.6 Workflow Management

What is a typical Workflow ?

14

New raw 
data file

Reconstruction Reconstructed 
file

Filter

Type B 
Sample

Type A 
Sample

MC File 1

MC File 2

MC File 3

MC File 4

Monte-Carlo
Generation

RAW File

GEANT4

Reco FileReconstruction



Status of Workflow Management in DIRAC

● A number of medium sized communities have reached the 
limit of what can be done in an ad hoc way.

● The core target for this are large production runs, not 
one-off analyses.

● Basic Workflow management exist in DIRAC core.
● Build on UK work done as part of IRIS digital asset to 

make code multi-VO compatible. 
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WP 1.6 Workflow Management

Planned work:

● Deploy Workflow Software on production 
server and ensure proper separation of 
VOs.
Deployed on pre-prod server.
Available for testing.
Now tested as a standard of GridPP 
pre-prod certification. 

● Todo: Increase user friendliness:
○ Error messages.
○ Easier recovery from failures (e.g. 

rerun part of a workflow).
○ Make existing Web based interface 

more user/admin friendly.
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Conclusion

● We are more or less on track with the proposed SWIFT-HEP work
○ The pilot logging is the most substantial bit of work and has already 

undergone several iterations.
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