
Managing workloads and
workflows with DIRAC for

SWIFT-HEP
Janusz Martyniak, Daniela Bauer & Simon Fayer for

Imperial College

Update

Overview

● Recap: What is DIRAC and how does it fit in within the
SWIFT-HEP remit?

● Status

2

DIRAC

● DIRAC is a software originally developed by LHCb. The DIRAC
consortium was founded in 2014 to enable adoption by other
communities. (The UK is a member of this consortium via
Imperial College.)

● DIRAC comprises of:
○ Workload Management System
○ File Catalog/Data Management System
○ Workflow Management System
○ Documentation: https://dirac.readthedocs.io/en/latest/

● Provides a standardised user interface to multiple compute
(grid & cloud) and storage resources.
○ It has always had an auto stage-in for input data from other

sites (“the original data lake”)
● Written in Python (for Linux)

○ Open Source: https://github.com/DIRACGrid/DIRAC
3

https://dirac.readthedocs.io/en/latest/
https://github.com/DIRACGrid/DIRAC

DIRAC Schematic (for reference)

Configuration
System

Job Management
System

Data Management
System

Database

GridPP DIRAC
Module

P
ilot Job

Cloud Data Storage
(SE)

Grid

User Job

User

4

DIRAC server

DIRAC Users

● Comprised of HEP and non-HEP communities:
○ HEP: LHCb, NA62, Belle2, ILC/Calice, mu3e
○ Neutrinos: T2K, HyperK, JUNO, SoLid
○ Phenomenology: Pheno (Durham)
○ Dark Matter: LZ
○ Astronomy: CTA, LSST, Auger
○ Biological sciences

● Swift-HEP work is on the DIRAC core software, which is
used by all communities.

● GridPP provides a DIRAC instance as a service to the
non-LHC communities it supports.

● DIRAC is very much a here and now project, but it needs
adapting for the future.
○ SWIFT-HEP only represents a subset of ongoing work.

5

SWIFT-HEP: In the grand scheme of things

1.8:

6

Workflow
Management

today

WP1.5 Pilot Log System

● Pilot jobs:
○ Check the worker-node environment
○ Can stage required input/output files
○ Start and supervise the user job (record memory usage, efficiency, etc.)

● The pilot logs are crucial for diagnosing problems.

● Pilot job logs are stored in an technology dependent way at the execution resources
● Retention policies vary by technology and site:

○ Some logs only kept while job running!
○ Others kept 3 days - 1 month depending on configuration.
○ Transient (cloud) resources may not have space suitable for archiving these logs.

● Log can be completely lost in cases where job crashes (i.e. exceeding batch limits).
● Retaining pilot job logs in a reliable, resource independent manner was identified as a

high priority issue by LHCb and other communities.

7

WP1.5 Pilot Log System: Implementation

P
ilot Job

Cloud Grid

Pilot Log Store

Admin

● Develop a central pilot log
store and allow the pilot jobs
to write logs there directly,
therefore removing any
resource dependencies.

● At peak times this service
needs to cope with a large
amount of traffic in a
fault-tolerant way.

8

Pilot Log System Status - technical

9

Pilot job

Log collector
(Tornado
service)

FIle
CachePlugin

Storage
Element

Message
queue OpenSearch

JSON: log
message and
metadata

raw logs

JSON

MQ Plugin

Substantial progress made.

Code
DIRAC server:
https://github.com/DIRACGrid/DIRAC/p
ull/6208

Pilot side:
https://github.com/DIRACGrid/Pilot/pull
/158

https://github.com/DIRACGrid/DIRAC/pull/6208
https://github.com/DIRACGrid/DIRAC/pull/6208
https://github.com/DIRACGrid/Pilot/pull/158
https://github.com/DIRACGrid/Pilot/pull/158

WP 1.8 DIRAC High Level Commands

● Target is medium size communities
without (much) dedicated computing
support.

● These communities often already use
the DIRAC File Catalogue and basic
DIRAC data management tools, so
the threshold for adoption is quite low.

● Develop tools for the most common
use cases and make them available
to all users as part of DIRAC, e.g.
○ Importing existing data into the file

catalogue.
○ Copying directories from one storage

element to another.

Data Management
System

E
xi

st
in

g
To

ol
s

N
ew

 T
oo

ls

User

10

WP 1.8 DIRAC High Level Commands

● Turns out we aren’t the only ones whose users would like
these facilities.

● Teamed up with EGI to merge the various bits of code and
integrate them into core DIRAC

● https://github.com/DIRACGrid/DIRAC/pull/6403
● Close to being merged.

11

https://github.com/DIRACGrid/DIRAC/pull/6403

WP1.7 DIRAC Workload Management - Plans

● Current load management system fairly basic:
○ Jobs bound to sites quite early in

submission process.
○ Target site immutable after

submission and binding.
● Not flexible enough for large infrastructures,

e.g.:
○ Unexpected changes in target site

capacities (both up and down).
○ Misunderstandings lead to users

submitting large batches of jobs to
unsuitable target.

● Develop a manual control for admin with a view
to automate this in the future.

Job Management
System
Admin

Interface

Admin

12

WP1.7 DIRAC Workload Management

● Low(er) priority:
○ no recent problems seen

● Status
○ might not be implementable as originally envisaged
○ code state best described as “collection of hacks”

● We might have to rethink that one:
○ Looking at solutions we can implement as an add-on to the core

DIRAC project, rather than integrating it

13

WP 1.6 Workflow Management

What is a typical Workflow ?

14

New raw
data file

Reconstruction Reconstructed
file

Filter

Type B
Sample

Type A
Sample

MC File 1

MC File 2

MC File 3

MC File 4

Monte-Carlo
Generation

RAW File

GEANT4

Reco FileReconstruction

Status of Workflow Management in DIRAC

● A number of medium sized communities have reached the
limit of what can be done in an ad hoc way.

● The core target for this are large production runs, not
one-off analyses.

● Basic Workflow management exist in DIRAC core.
● Build on UK work done as part of IRIS digital asset to

make code multi-VO compatible.

15

WP 1.6 Workflow Management

Planned work:

● Deploy Workflow Software on production
server and ensure proper separation of
VOs.
Deployed on pre-prod server.
Available for testing.
Now tested as a standard of GridPP
pre-prod certification.

● Todo: Increase user friendliness:
○ Error messages.
○ Easier recovery from failures (e.g.

rerun part of a workflow).
○ Make existing Web based interface

more user/admin friendly.

Job Management
System

Production Management
System

User Production
Manager

16

Conclusion

● We are more or less on track with the proposed SWIFT-HEP work
○ The pilot logging is the most substantial bit of work and has already

undergone several iterations.

17

