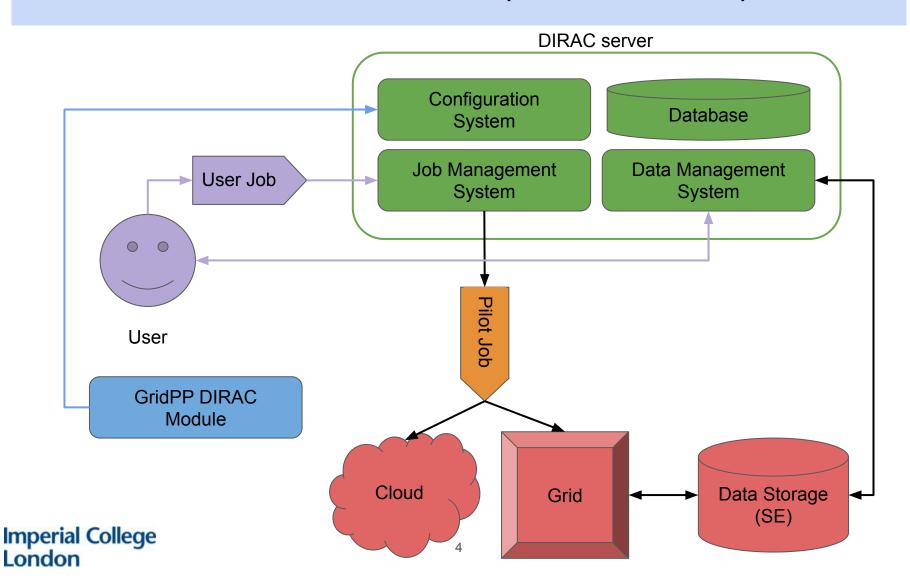
Managing workloads and workflows with CIRAC for SWIFT-HEP

Janusz Martyniak, Daniela Bauer & Simon Fayer for Imperial College


Overview

- Recap: What is DIRAC and how does it fit in within the SWIFT-HEP remit?
- Status

DIRAC

- DIRAC is a software originally developed by LHCb. The DIRAC consortium was founded in 2014 to enable adoption by other communities. (The UK is a member of this consortium via Imperial College.)
- DIRAC comprises of:
 - Workload Management System
 - File Catalog/Data Management System
 - Workflow Management System
 - Documentation: https://dirac.readthedocs.io/en/latest/
- Provides a standardised user interface to multiple compute (grid & cloud) and storage resources.
 - It has always had an auto stage-in for input data from other sites ("the original data lake")
- Written in Python (for Linux)
 - Open Source: https://github.com/DIRACGrid/DIRAC

DIRAC Schematic (for reference)

DIRAC Users

- Comprised of HEP and non-HEP communities:
 - HEP: LHCb, NA62, Belle2, ILC/Calice, mu3e
 - Neutrinos: T2K, HyperK, JUNO, SoLid
 - Phenomenology: Pheno (Durham)
 - Dark Matter: LZ
 - Astronomy: CTA, LSST, Auger
 - Biological sciences
- Swift-HEP work is on the **DIRAC core software**, which is used by all communities.
- GridPP provides a DIRAC instance as a service to the non-LHC communities it supports.
- DIRAC is very much a here and now project, but it needs adapting for the future.
 - SWIFT-HEP only represents a subset of ongoing work.

SWIFT-HEP: In the grand scheme of things

2023

Brunel RSE

Imperial RSE

utschow, UCL RSE

Proj Man, Proj leaders

Chadwick

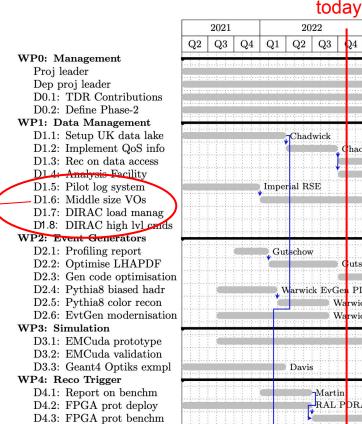
Imperial RSE

Imperial RSE

Q2 | Q3 | Q4

Q1

hadwick


2024

Costanzo

Fitzpatrick

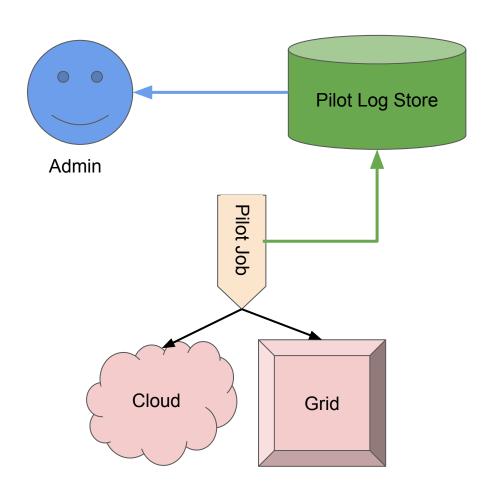
Q2 | Q3

Proj Man, Proj leaders

Imperial College London

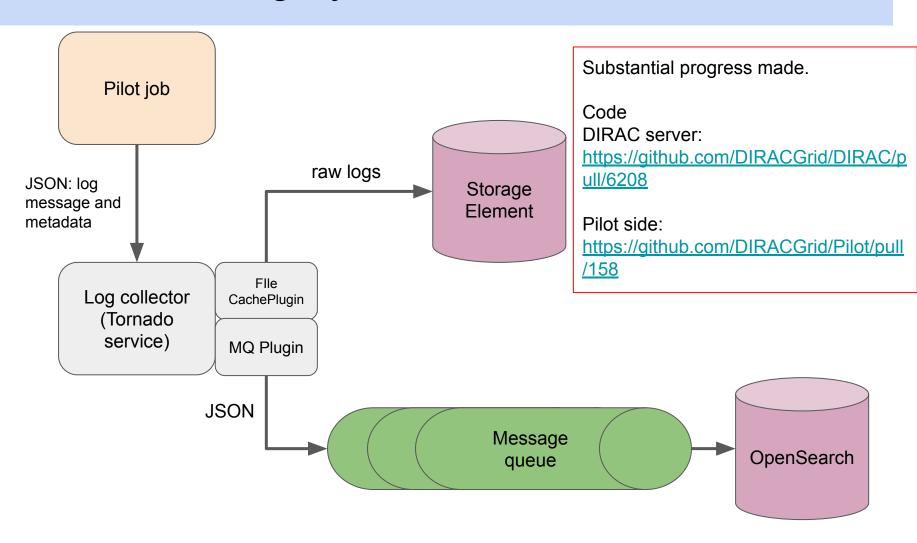
Workflow

Management

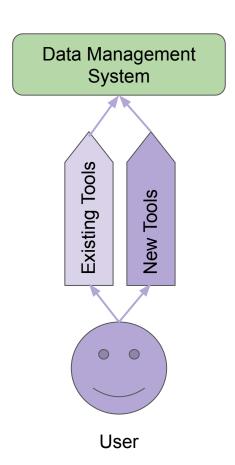

Gutschow Warwick EvGen PDRA Warwick EvGen PDRA Warwick EvGen RSE Morgan Morgan Martin RAL PDRA1, Sussex PDRA RAL PDRA1, Sussex PDRA, Martin D4.4: OneAPI report RAL PDRA1 D4.5: FasTras in OneAPI RAL PDRA2 D4.6: FasTras benchm Martin WP5: Analysis Systems D5.1: Oper UK data lake ristol PDRA D5.2: Caching mechanism Bristol PDRA D5.3: Per-site Optim Bristol PDRA D5.4: Workload schedule Bristol PDRA

WP1.5 Pilot Log System

- Pilot jobs:
 - Check the worker-node environment
 - Can stage required input/output files
 - Start and supervise the user job (record memory usage, efficiency, etc.)
- The pilot logs are crucial for diagnosing problems.
- Pilot job logs are stored in an technology dependent way at the execution resources
- Retention policies vary by technology and site:
 - Some logs only kept while job running!
 - Others kept 3 days 1 month depending on configuration.
 - Transient (cloud) resources may not have space suitable for archiving these logs.
- Log can be completely lost in cases where job crashes (i.e. exceeding batch limits).
- Retaining pilot job logs in a reliable, resource independent manner was identified as a high priority issue by LHCb and other communities.


WP1.5 Pilot Log System: Implementation

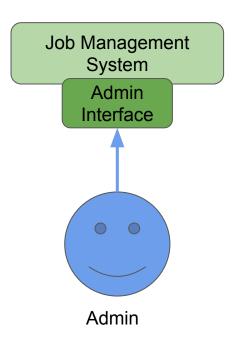
- Develop a central pilot log store and allow the pilot jobs to write logs there directly, therefore removing any resource dependencies.
- At peak times this service needs to cope with a large amount of traffic in a fault-tolerant way.



Pilot Log System Status - technical

WP 1.8 DIRAC High Level Commands

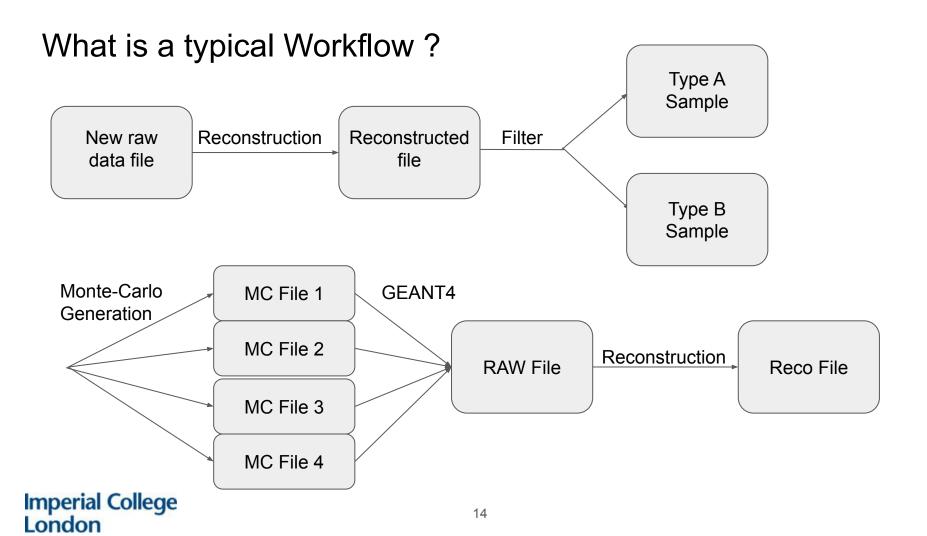
- Target is medium size communities without (much) dedicated computing support.
- These communities often already use the DIRAC File Catalogue and basic DIRAC data management tools, so the threshold for adoption is quite low.
- Develop tools for the most common use cases and make them available to all users as part of DIRAC, e.g.
 - Importing existing data into the file catalogue.
 - Copying directories from one storage element to another.



WP 1.8 DIRAC High Level Commands

- Turns out we aren't the only ones whose users would like these facilities.
- Teamed up with EGI to merge the various bits of code and integrate them into core DIRAC
- https://github.com/DIRACGrid/DIRAC/pull/6403
- Close to being merged.

WP1.7 DIRAC Workload Management - Plans


- Current load management system fairly basic:
 - Jobs bound to sites quite early in submission process.
 - Target site immutable after submission and binding.
- Not flexible enough for large infrastructures, e.g.:
 - Unexpected changes in target site capacities (both up and down).
 - Misunderstandings lead to users submitting large batches of jobs to unsuitable target.
- Develop a manual control for admin with a view to automate this in the future.

WP1.7 DIRAC Workload Management

- Low(er) priority:
 - no recent problems seen
- Status
 - might not be implementable as originally envisaged
 - code state best described as "collection of hacks"
- We might have to rethink that one:
 - Looking at solutions we can implement as an add-on to the core DIRAC project, rather than integrating it

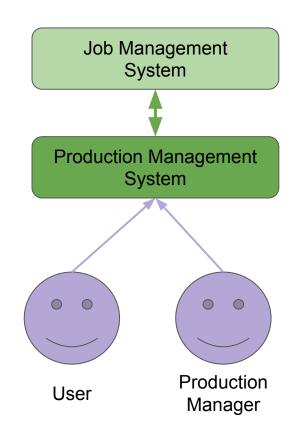
WP 1.6 Workflow Management

Status of Workflow Management in DIRAC

- A number of medium sized communities have reached the limit of what can be done in an ad hoc way.
- The core target for this are large production runs, not one-off analyses.
- Basic Workflow management exist in DIRAC core.
- Build on UK work done as part of IRIS digital asset to make code multi-VO compatible.

WP 1.6 Workflow Management

Planned work:


 Deploy Workflow Software on production server and ensure proper separation of VOs.

Deployed on pre-prod server.

Available for testing.

Now tested as a standard of GridPP pre-prod certification.

- Todo: Increase user friendliness:
 - Error messages.
 - Easier recovery from failures (e.g. rerun part of a workflow).
 - Make existing Web based interface more user/admin friendly.

Conclusion

- We are more or less on track with the proposed SWIFT-HEP work
 - The pilot logging is the most substantial bit of work and has already undergone several iterations.