EvtGen and Pythia developments

EvtGen

Fernando Abudinén, John Back, Michal Kreps, Thomas Latham

Pythia

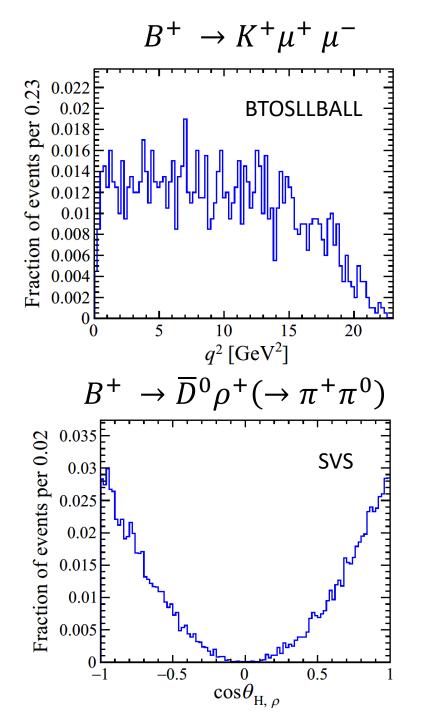
Ulrik Egede, Tom Hadavizadeh, Philip Ilten, Minni Singla, Peter Skands

SwiftHep workshop November 2, 2022

Recap on EvtGen status

- Generator package specialised for heavy-flavour hadron decays
 - Used as well inside simulation of b jets
- Contains about 130 decay models implementing specific dynamics of various decays
- Maintains detailed decay table with large number of explicit decays
 - Known decay branching fractions do not add up to 100%, remainder is filled up by generating quark configurations and passing those to Pythia8 for fragmentation
 - Fraction of decays passed to Pythia8 depends on particle (*b*-baryons rely more on Pythia8 than others)
- τ decays simulated using TAUOLA
- PHOTOS used for simulation of final-state radiation (FSR)
- Source code stable over past 10 years (most changes due to addition of new models)
- Recently went through some modernisation and clean-up

Plans for EvtGen


- Physics wise no plan for changes in near future
- Currently working on code consolidation
 - Unify coding style, C++ modernisation
 - Plan to decrease code duplication within decay models
 - Improve/Update documentation (Doxygen and paper/guide)
 - Implement common testing framework for validation
- Currently making EvtGen thread safe
 - Event $\widehat{=}$ particle whose decay is simulated (through full decay chain)
 - Main blockers are Tauola and Photos, which are not yet thread safe
 - Work on source-code redesign currently ongoing with help of computing engineers
 - Full adaptation is challenging (first core code adaptation almost finalized)

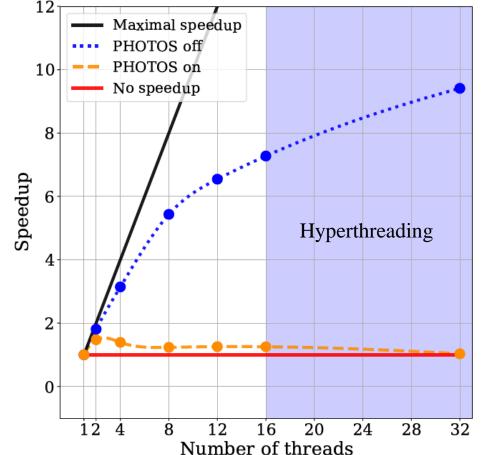
Heather Ratcliffe

Chris Brady

Testing framework

- Simulation needs testing and validation after structural changes due to code consolidation and implementation of thread-safety
- Tests (in different formats) existed only for about 40% of the 130 decay models
- Migrated all tests and added new ones to a common testing framework
 - \Rightarrow With common testing module and configuration files
- Implemented automatic recognition of tests to be run depending on changes (still to be refined)
- \Rightarrow Finalized first working version with tests for all models
- \Rightarrow Will require to add new tests for each new model

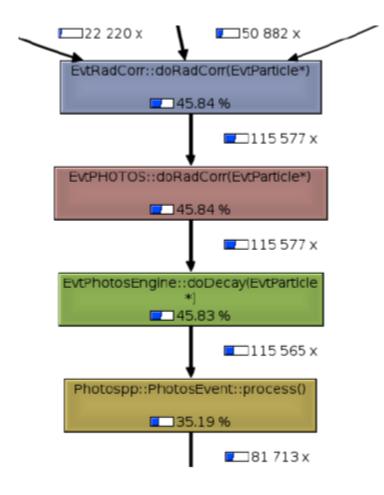
Challenges for multithreading in EvtGen


Internal: structural limitations for multithreading inside EvtGen

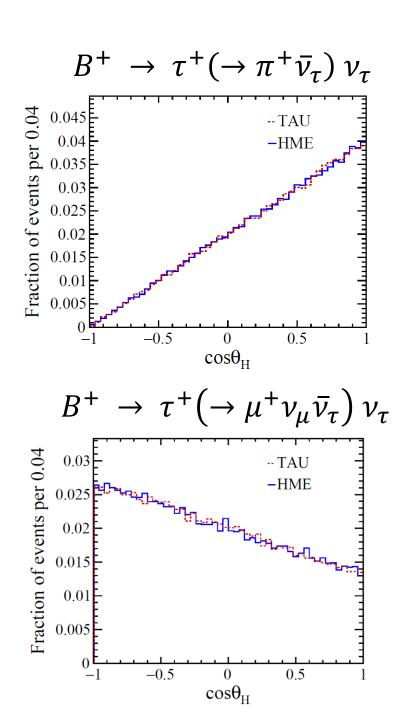
- Global instance of random number generator
- Global instance of particle properties and decay table
- ⇒ Needed structural changes identified and first combination of solutions found
- External: limitations from dependences
 - TAUOLA
 - PHOTOS
- ⇒ Overcoming limitations from dependences are more challenging as they are external
 - TAUOLA and PHOTOS authors currently exploring ways to enable thread safety
 - Exploring use of Pythia8 as alternative to TAUOLA
 - Look for an alternative to PHOTOS (perhaps port FSR simulation from other generators)

Progress on thread-safety

Set of solutions to reach thread-safety (preliminary):


- Converted static objects to static const where possible
- Global singleton objects made thread-local
- Serialized (mutexed) calls to PHOTOS and TAUOLA
- ⇒ Deeper structural changes needed to fully exploit multithreading (plan to continue working on it)
- ⇒ Current preliminary status reached thread-safety, passing tests for all decay models
- \Rightarrow But performance limited by external dependencies

Heather Ratcliffe Chris Brady


PHOTOS in EvtGen

- PHOTOS is commonly used in almost every decay
- Profiling shows a significant amount of CPU time consumption in PHOTOS itself
- Conversion EvtGen ↔ HepMC also significant
 - Similar conversion happens inside PHOTOS
 - Probably half of CPU time effectively spent on conversion
 - Need to try bypassing HepMC to estimate possible gain
- \Rightarrow Usually ~1/3 of EvtGen CPU time spent on FSR simulation

Pythia 8 for au decays

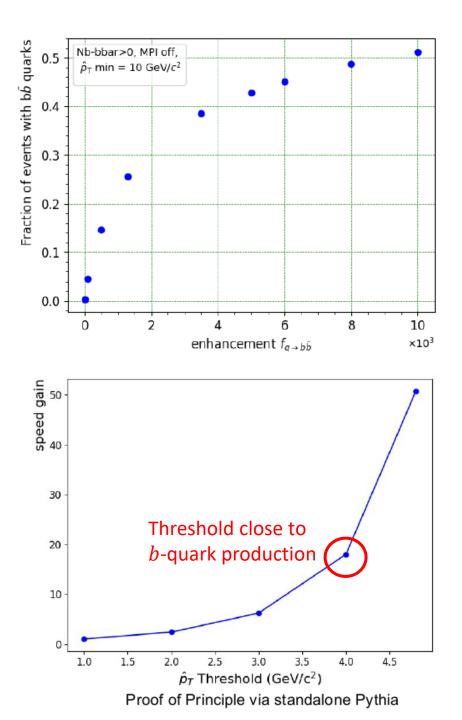
- In addition to multithreading limitations, spin-state information of \u03c6 not propagated between EvtGen and TAUOLA:
 - TAUOLA expects τ from W, Z, γ or H, not from B
 - needed for analyses sensitive to \(\tau\) polarization
- Simulation of \(\tau\) decays with spin-state propagation possible with PYTHIA8 using HME (helicity-matrix element) amplitude model.
- Main EvtGen ↔ Pythia interface ready
- Need to iron out conversion of helicity/spin basis (and initialization)

8

Pythia status and plans

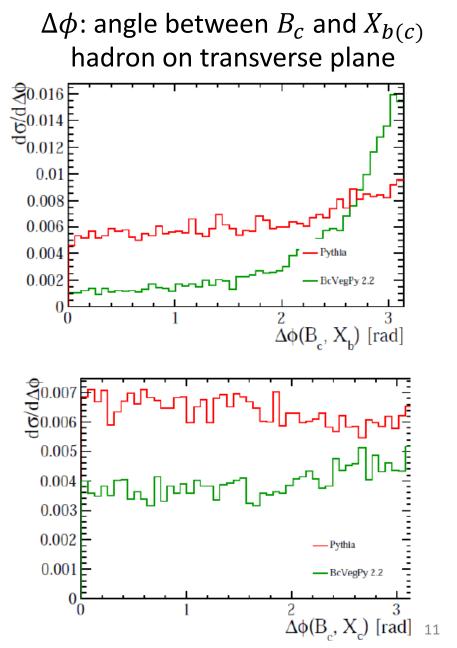
- General purpose generator for simulation of collision events of particles (electrons, protons, photons, heavy nuclei) at high-energies.
- Contains models for several aspects: hard/soft interactions, parton distributions, initial/final-state parton showers, multiparton interactions, fragmentation and decay.

Currently working on different aspects aimed at making simulation of *b*-hadron faster:

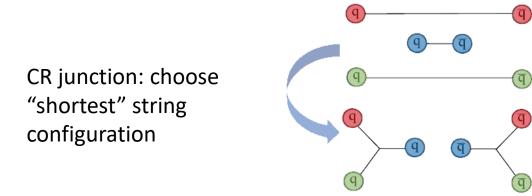

- B enhancement
- Doubly-heavy hadrons in Pythia

Plans for future developments:

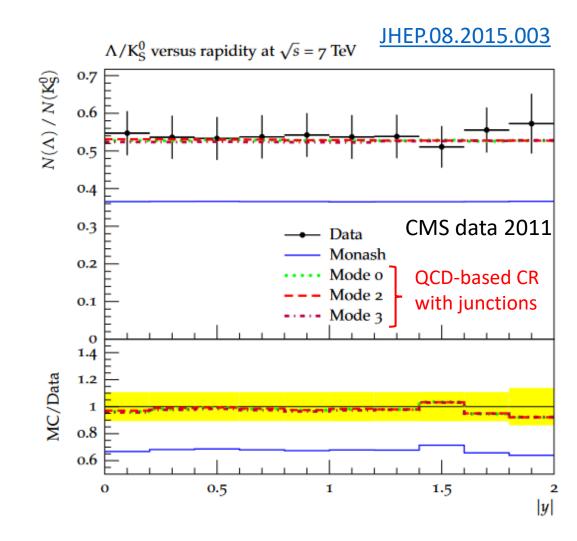
- Forced hadronization
- Optimizing simulation for color-reconnection modes


B enhancement

- Goal: make *b*-hadron production faster (in LHCb simulation)
- Particularly important for cases where generator consumes more CPU time than detector simulation
- Examples: production of B_s , B_c , Ξ_{cc} , Ω_{bb}
- Produced *b*-hadrons should still be kinematically unbiased
- Module made flexible for user to enhance $g \rightarrow c\bar{c}, b\bar{b}$ splitting
- About to be ready to tested within LHCb simulation framework GAUSS


Double-heavy hadrons in Pythia

- Pythia currently not employed for B_c or other double heavy hadrons at LHCb
- Exploring ways to increase efficiency by vetoing events without desired heavy-quark composition at early simulation stage
- Possible vetoes based on presence of correctly colour-connected heavy quarks
- Currently comparing geometrical B_c distributions with dedicated generators like BcVegPy which currently has a limited list of supported production mechanisms
- $\Delta \phi$ sensitive to production mechanism
 - ⇒More mechanisms available in Pythia 8 and thus more uniform distributions



Improving color-reconnection models

 QCD-based color-reconnection models with junction agree well with collision data (without particular tuning)

- However inefficient and CPU expensive
- Structural changes and efficient alternative algorithm for minimization identified (<u>link</u>)
- ⇒ Need to be implemented and tested, but promising for enhancement of baryon production

Future plans

Simulation with more than one heavy-quark pair

- Currently investigating ways to improve efficiency of simulation for events with more than one heavy-quark pair produced in multiparton interactions
- Aim to study production mechanisms of quarkonia and compare simulated kinematic distributions with data

Forced hadronization

- Implement forced hadronization rather than current repeated hadronization
- Will make a considerable impact for events with baryons with multiple s like $\Omega_b(ssb)$
- Less significant impact expected for B^{\pm}, B^{0}

Summary and outlook

EvtGen:

- Currently making EvtGen threadsafe
- ⇒ Finalized common testing framework for validation
- ⇒ Converged on preliminary set of solutions to enable thread-safety of generator (exploitation of multi-threading will require further structural changes)
- \Rightarrow Performance limited by external dependencies (especially PHOTOS)
- $\Rightarrow \tau$ decays: plan to iron out basis conversion for Pythia8 (interesting also for TAUOLA)

Pythia:

- Working on enhancement of b-hadron production to make simulation faster
- Exploring how to improve efficiency for events with multiple heavy quarks
- ⇒ Plan to study production mechanisms and improve implementation of colorreconnection models