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Low Gain Avalanche Diode
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● The low gain avalanche detector (LGAD) is the state-of-the-art technology in time 

measurement for charge particles, with the following features:

○ Provide moderate internal gain of 5 to 50 ⇒  can be used for small signal 

detector (low energy X-rays). 

○ Active thickness of 20 to 50 um ⇒ fast collection time, high frame rate 

capability.

○ Timing resolution is 20 ps or better before high dose irradiation for MIPs.
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Tested LGAD Samples
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Device Active Thickness [um] Gain Layer Breakdown [V]

HPK LGAD type 3.1 50 shallow ~230

HPK LGAD type 3.2 50 deep ~130

HPK PiN 50 No gain ~400

BNL LGAD 20 shallow ~100

● Tested 1 PiN device, 3 (DC) LGAD types:
○ All samples are single pad devices with active area of 1.3x1.3 mm2

○ Two implant depths of the gain layer: shallow ~1um, deep ~2um.

● Tested 50um BNL strip AC-LGAD. (very preliminary)

HPK Pad Device BNL Pad Device BNL AC-LGAD Strips Device
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The SSRL Testbeam Setup
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● The Stanford Synchrotron Radiation Lightsource (SSRL) 11-2 beamline:
○ X-rays energy: 

■ 5 to 70 keV
■ Energy resolution of ΔE/E ≈10-4

■ Monochromator to filter harmonics
○ Beam structure:

■ Spot size 25mm x 1mm
■ 4 groups of 70 bunches

● 10 ps length (RMS)
● Separated by 2.1 ns

● All measurements were performed at room temperature.

Digitize with 
Keysight UXR 
13GHZ 
128 GS/s 
oscilloscope
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The SSRL Testbeam Setup
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● Data acquisition:

X-rays 
beam LGAD

Analog 
signal 2GHz BW, 

470Ω TIA 
on PCB

G=10 
voltage 
amplifier

Digitize with Keysight 
UXR 13GHZ 128 GS/s 
oscilloscope

1 SSRL orbit 70 bunches

Time reference 
synced with 
beam trigger
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X-rays Energy Estimation
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● The signal maximum (peak) is used as estimator for X-rays energy. 
○ Baseline correction from [1] is applied to reduce fluctuation from amplification circuit.
○ Signal peak at least > 7σ

noise
○ Time separation between adjacent peaks at least 2.1 ns

● Using mean(𝜇) and width(σ) of the Gaussian fit to the peaks distribution:
○ Energy : 𝜇
○ Resolution: σ/𝜇

Interval for 
noise 
estimation

Signal from different 
bunches Base energy

30 keV 

Harmonic
60 keV

Example distribution for 30 keV X-rays
HPK 3.1 at 200V
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X-rays Energy Linearity
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● The 𝜇 is extracted for each energy, bias voltage, and sensor type.
● The relation of 𝜇 to X-rays energy is shown below: 
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X-rays Energy Resolution
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● The energy resolution (σ/𝜇) of LGADs for each of the tested X-rays energies 
are shown:
○ The energy resolution is approximately constant over the tested energy 

range.
○ The energy resolution degrades at higher gains.

PiN

150V
Low gain

200V 
Moderate gain

230V
High gain
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Extracting the Timing Resolution 
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● Constant fraction discriminator (CFD) at 20% is used for timing.
○ The fast rising edge of the initial carrier drift is more stable and precise. 

● Time difference with respect to the reference time is calculated for each bunch
○ The bunch separation of 2.1 ns is accounted.
○ Distribution is fitted with a Gaussian, the sigma is the timing resolution.

Time Resolution 
122 ps
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Timing Resolution for X-rays
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● The timing resolution is consistent for the tested X-rays energy range.
● Thinner sensors (20 vs 50 um) have better timing performance as expected.
● However:

○ The timing performance for X-rays is worse comparing to MiPs (< 50 ps)
○ In the case of 50um sensors, PiN provides better timing.

● Why are we seeing bad timing resolution?

PiN sensor
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Time Walk Due to X-rays Conversion
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● The absorption of X-rays photons at different depth inside the sensor introduces 
time delay in the avalanche process.

● The time delay in the avalanche process will affect the signal formation shape and 
contributes to the timing performance.

N+ N+

The delay of 
avalanche process 
contributes to time 
walk

X-rays absorption 
near surface

X-rays absorption 
near backside
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Time Walk Due to X-rays Conversion
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● In the case of PiN (no gain), the rising edge not affected by the delay. 
○ The variation in the peak and width is due to the collection of electrons vs holes.

● The rising edge and the peak of LGADs is sensitive to the X-rays absorption depth:
○ Using CFD 20% reduces the time walk effect but doesn’t remove it completely.
○ Absorption on the back has more gain (charge cloud expansion & gain suppression)

PiN
50um

LGAD
50um

TCAD simulated signal of PiN and LGAD at different absorption depth. 
(X-rays energy = 20 keV) 
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Timing Resolution for X-rays
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● LGAD bulk E-field is usually high enough to saturated the carrier drift velocity (1x107 cm/s).
● Assuming X-rays photon absorption depth is approximately equally probable (which is not true 

and it depends on the X-rays energy), the time resolution due to avalanche process delay is 
approximately: 50um is  ~125 ps, 20um is ~50 ps

● Although PiN devices have better timing resolution, LGADs have advantage on signal 
amplification. Also, thinner LGADs will improve the timing resolution for X-rays.

PiN sensor
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High Repetition Rate Capability
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● The LGAD charge collection time is fast due to very thin active 
thickness and saturated carrier drift velocity.

● LGADs is able to resolve 500 MHz repetition rate (with capability up 
to 1GHz).

Overlay of 1k waveform events
in a given time window
BNL 20 um thick LGAD
X-ray energy 30 keV   

2.1 ns bunch separation



Gain Suppression

21



HSTD13, 2023

Why is the Gain Different?

22

● The gain of LGAD is measured in reference to the PiN device in the laboratory.
● The gain of LGAD for conventional MIP like charge particles is different from 

X-rays. In the case of HPK 3.1 at 200V:
○ The gain for MIPs is ~20.
○ The gain for 30 keV X-rays is ~10 
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Gain Suppression
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● TCAD simulation is used to study the MiP-like vs X-rays-like deposition.
○ Localized deposition is used to approximate X-rays deposition.
○ Continuous track is used to approximate MIP deposition.

TCAD 
simulation

Measurement
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Gain Suppression
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● One possible explanation to gain suppression is related to the generated e-h 
density and the gain layer E-field relaxation process.

N+

Initial Deposition from X-rays

N+

Charge cloud drift toward gain layer. 
Shape expand due to diffusion

Avalanche process starts for 
the first portion of the charge 
cloud.
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Gain Suppression
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● One possible explanation to gain suppression is related to the generated e-h 
density and the gain layer E-field relaxation process.

● This variation of E-field depends on the generated e-h paris density per unit 
distance.

● MiP generates less e-h paris per unit distance comparing to point-like X-rays 
deposition.

Snapshot of the electric field 
within the gain layer at different 
time for localized input charge.

Recovery (relaxation) time

Note: the impact ionization has 
exponential dependence on the 
field. 

TCAD 
simulation
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Gain Suppression
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● One possible explanation to this is related to the generated e-h density and 
the gain layer E-field relaxation process.

● This variation of E-field depends on the generated e-h paris density per unit 
distance.

● MiP generates less e-h paris per unit distance comparing to point-like X-rays 
deposition.

Snapshot of the electric field 
within the gain layer at different 
time for localized input charge.

Recovery (relaxation) time

Note: the impact ionization has 
exponential dependence on the 
field. 

TCAD 
simulation

Gain suppression studied by other groups: e.g. “Hunting for Sharks 
with TCAD (Simulation of TPA-TCT measurements on LGAD Gain 
Suppression)”

https://indico.cern.ch/event/1334364/contributions/5672074/

Gain suppression with larger dynamic range (e.g. non MIP particles 
with bragg-peak in energy deposition):

See Jennifer Ott’s talk on the PIONEER experiment: 
https://indico.cern.ch/event/1184921/contributions/5574780/

https://indico.cern.ch/event/1334364/contributions/5672074/
https://indico.cern.ch/event/1184921/contributions/5574780/
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How about AC-LGAD?
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● Very preliminary test of AC-LGAD strip sensors using the same beam line:
○ Readout all strips with 16 channels FNAL board and CAEN DT5742 digitizer.
○ Unfortunately, beam spot is broad so no information on position.

● Base on the TCT studies on the same devices, the charge sharing mostly 
contained in 3 strips:
○ Search for events with highest response in the middle strip and lower response in 

the two neighbors, and response from the remaining strips.
○ Sum the three strips signals to estimated the total energy.
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How about AC-LGAD?
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● The energy response is roughly linear as expected.
● The energy resolution is between 12% to 21%. It’s slightly worse than DC 

devices probably due to charge sharing.
● The shorter strip device has slight better energy resolution at high energy due 

to smaller sharing.

Short
strips

Long
strips

37 keV 
distribution

20 keV 
distribution
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● The SSRL testbeam results for LGADs were shown:

○ Energy resolution is between 6% to 20%, and out performing 

conventional PiN devices (and better SNR).

○ Time resolution is between 50 to 200 ps. (depends on thickness)

○ Easily resolve 500 MHz repetition rate of the X-rays beam line.

● The gain of LGADs depends on the type of energy deposition. The gain is 

lower for X-rays in comparison to MiP.

35 keV X-rays
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Future Developments
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● Next test beam scheduled for February 2024:

○ Beam line 7-2 with focused beam of spot size 50x100um

○ Allows for better study of standard LGADs with X-rays always 

contains in the active region with gain.

○ Test of LGAD and AC-LGAD array with position information.

● Looking for Compton response using SiPM trigger/tag.

● Extend the energy range down to sub-KeV.
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High Repetition Rate
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● Frame rate capability is lower for thicker LGAD (50um)
● It’s still capable to fully resolve 500MHz frame rate.

Overlay of 1k waveform events
in a selected time window

50um thick
X-ray 30keV   
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GEANT4 Simulation 
of X-rays Absorption Location
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● GEANT4 simulation of the X-rays absorption location.
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Gain Suppression
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● One possible explanation to this is related to the generated e-h density and 
the gain layer E-field relaxation process.

● This variation of E-field depends on the generated e-h paris density per unit 
distance.

● MiP generates less e-h paris per unit distance comparing to point-like X-rays 
deposition.

1) charge arrived at the 
gain layer at later time see 
a relatively lower field due 
to the previous impact 
ionization process. 
–> gain suppression

2) Faster recovery time 
should reduce the gain 
suppression effects.

Note: same e-h 
density per unit 
distance is used 
for localized and 
track deposition.
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Tmax vs Pmax & Averaged Waveform
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● Correlation plots of the Tmax vs Pmax

Normalized
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Gain Suppression & Absorption Depth
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● Absorption on the back has more gain for LGADs due to charge cloud 
expansion

Note scale is 
zoomed


