

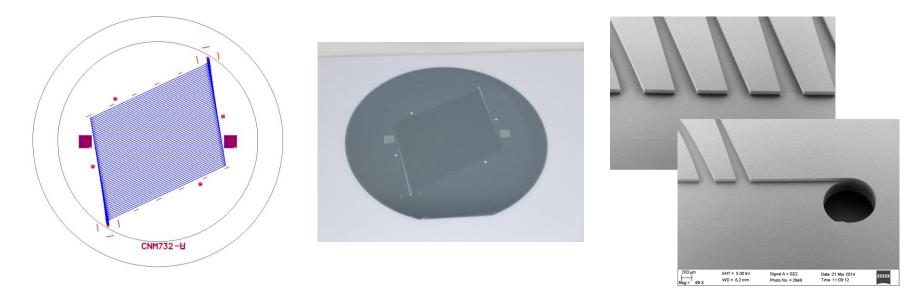
Development of Silicon Interposers with Embedded Microchannels and Metal Re-distribution Layer for the Integration of Hybrid Detector Systems

<u>Miguel Ullán</u>¹, Jonathan Correa², Vainius Dauderys¹, Marta Duch¹, Luis López³, Roser Mas¹, Alberto Moreno¹,

¹ Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Barcelona, Spain.
 ² Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
 ³ European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany

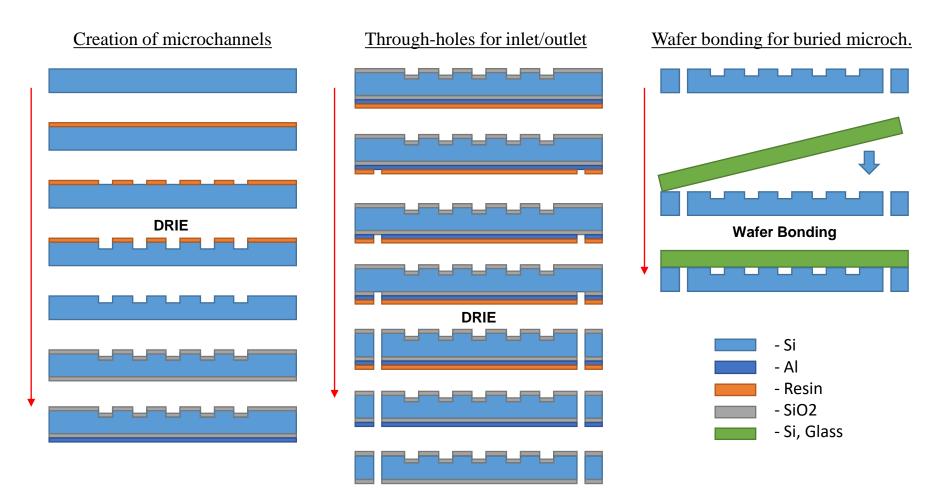
- Introduction and Framework
 - Microchannel Cooling
- Embedded Microchannel Technology
 - Technological process
 - Microchannels
 - Wafer bonding
 - Initial Prototypes
- Current Objectives
 - Technological process
 - Metal with microchannels
 - > Results
- Summary and Future Work

- In current HEP and other Physics experiments there is a need to keep the silicon detectors at low temperature (-10 °C to -40 °C)
 - Leakage current increase with temperature and irradiation
 - \Rightarrow Power needs \rightarrow partial depletion \rightarrow inefficiency
 - \Rightarrow Thermal runaway
- Different solutions
 - \succ Air cooling
 - Liquid cooling
 - Bi-phase cooling
- Complex system integration (sensors, electronics, services)
 - Larger heat densities
 - Technology limits for pipe reduction and coverage
 - Thermal connection with sensors and electronics
 - Complex hybrid detector assemblies

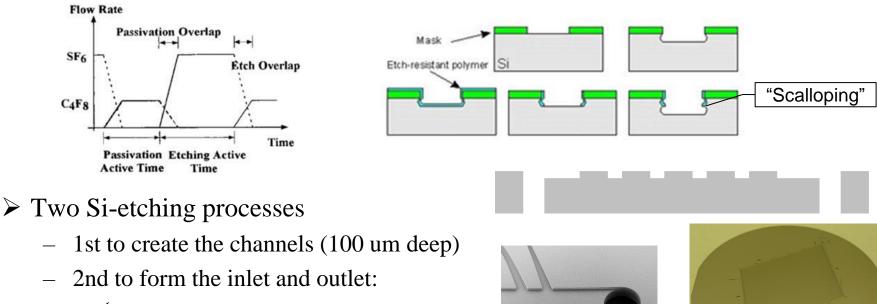

- Scaling
- High power (heat) densities
- Heat transfer efficiency
- In HEP and other Physics facilities:
 - Reduce material (radiation length)
 - > Many thermal cicles + position resolution \rightarrow small (no) CTE mismatch
 - Large areas to refrigerate (lower heat density)
 - → Thermal Uniformity → Non-uniform heat removal "capilars"
 - Assembly and integration needs
- Our work:
 - Embedded microchannels basic technology development and prototyping
 - Using the IMB-CNM technological capabilities (DRIE, wafer bonding, CMOS processing)
 - DESY (Hamburg) in fluidic and thermal tests and system integration
 - > X-FEL in simulations and design assessment

Past Work

- In the past, we developed the technology of embedded microchannel cooling for High Energy Physics detectors
 - N. Flaschel, et al. "Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments", NIMA, vol. 863, pp. 26-34, 2017. http://dx.doi.org/10.1016/j.nima.2017.05.003
 - Ph.D Thesis: Micro-channel Cooling For Silicon Detectors. Nils Flaschel. Hamburg University. 2017



Technological Process


• Technological steps for buried micro-channels at CNM

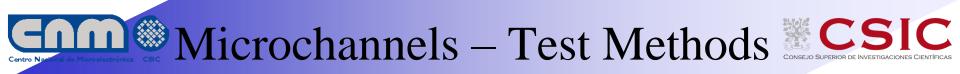
Basic Technology: Microchannels

Creation of microchannels

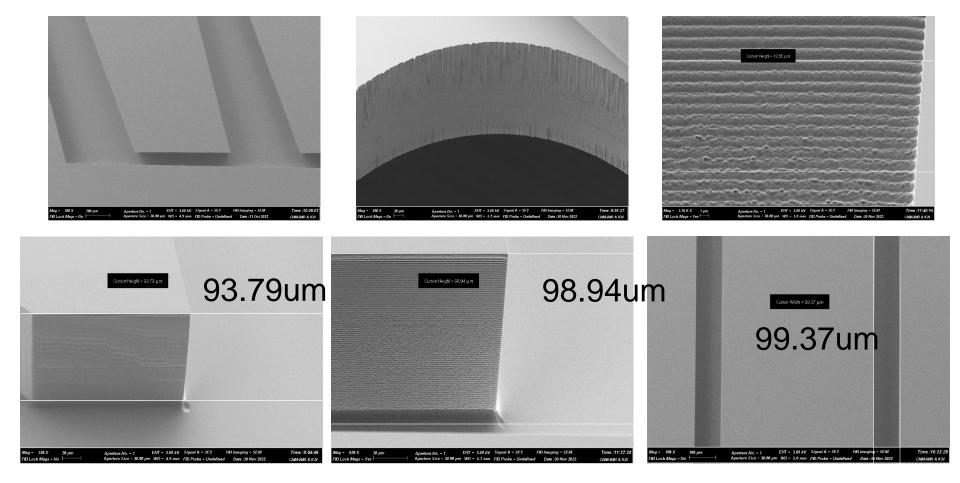
- Deep Reactive-Ion Etching (DRIE) (Alcatel 601 E)
 - Chemical-Physical etch of silicon
 - Very anisotropic \rightarrow high aspect ratio (deep and vertical holes)
 - Bosch process: alternating between etching (SF_6) and passivation (C_4F_8)


- ✓ Through hole
- ✓ "double-side" alignment

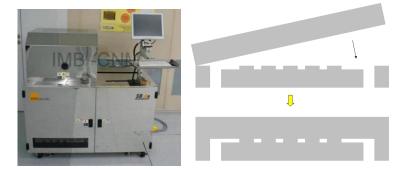
Contro National Control Contro

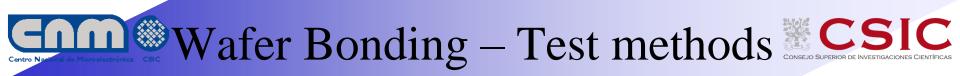

Microchannels evaluation

• Microscope – defect/yield analysis


- Yield analysis made on 10 wafers (49 channels/wafer = 490 ch)
 - Several channels: Non-critical minor defects and dust
 - Three channels: Blocking debris (can be cleaned)
 - Seven channels: "Columnar" channel etch defect (not blocking)

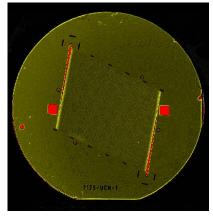
Micro-channels evaluation

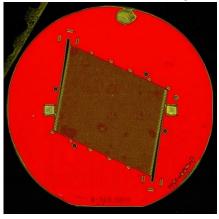

• SEM (Scanning Electron Microscopy) (Zeiss Auriga 40)


Example 2 Basic Technology: Wafer Bonding

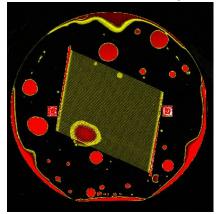
Wafer bonding (Süss Microtech Sb6e)

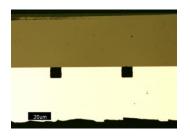
- Anodic: Borosilicate Glass Si
 - High V (1000 V), Low T (~350 °C),
 - PYREX[®], MEMpax[®]
 - The Micro-machining in the glass wafer
- Eutectic: Metal-Si
 - Low T (~400 °C), Au
 - ☞ Al?
- Fussion/Direct: Si-Si
 - High pressure (2-8 Bar), Low T (~450 °C),
 - Surface preparation is critical

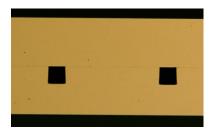


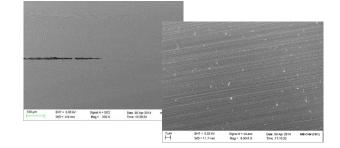

Wafer bonding evaluation

• SAM (Scanning Acoustic Microscopy) (Sonoscan-Gen5)

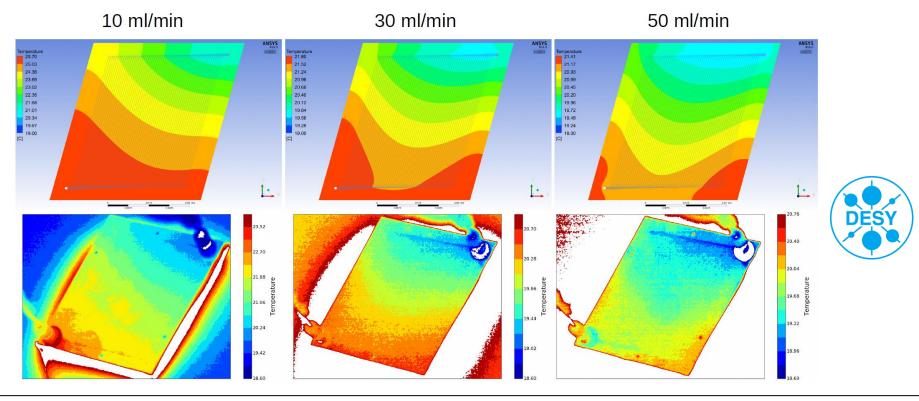

Anodic bonding:


Eutectic bonding:



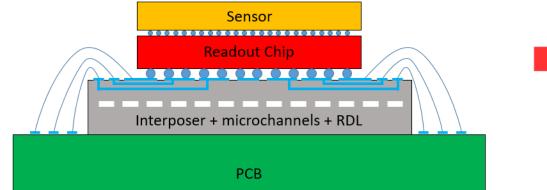

Fusion bonding:

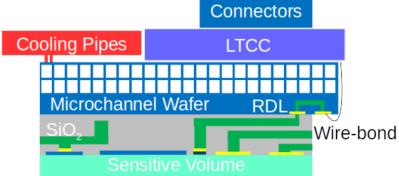
• Cross sections (Reverse engineering)



Initial Prototypes

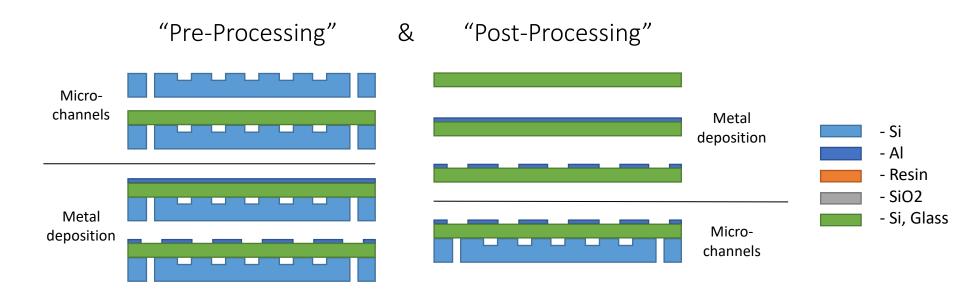
- Fluidic and thermal tests
 - ➤ Laminar flow
 - ➢ Good agreement with simulation
 - Thermal homogeneity across the sample, < ±1 °C (for lowest flow rate)</p>

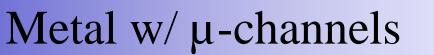

Current Objective


Integration of embedded micro-channels with metal Redistribution Layer (RDL) in silicon interposers

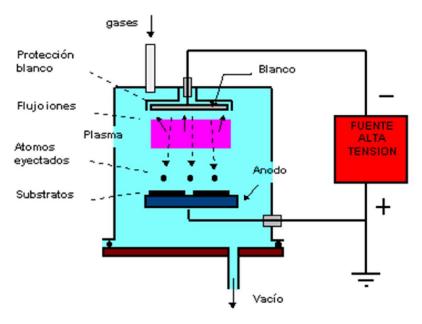
- Combining the cooling capabilities with the electrical connection of the detector hybrid assembly or monolitic detector with the backend electronics and outside world
 - Both for signal and power routing

Hybrid assembly


Monolithic integration



- Technological options
 - Pre-processing: The microchannels are created first and then the metal is deposited on the assembly and structured with a photolithographic process
 - Post-processing: The metal is deposited and structured first on a single wafer, then the buried microchannels are created by wafer bonding

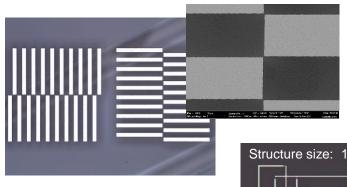


Metal deposition

• Sputtering process (Kenosistec KS800H)

- Sputtering system to deposit metallic layers
- ➤ Target used: Al (99.5%) / Cu (0.5%)
- ≻ Other targets available: Au, W, Ti, ...
- Better adherence than evaporation

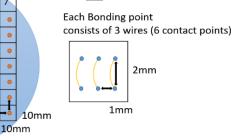
$\underbrace{\textbf{Converted w/ } \mu - channels - Test methods \\ \underbrace{\textbf{Converted w} etal w/ } \mu - channels - Test methods \\ \underbrace{\textbf{Converted w} etal w/ } \mu - channels - Test methods \\ \underbrace{\textbf{Converted w} etal w} etal \\ \underbrace{\textbf{Converted w} etal w}$


Metal evaluation (in assembly with micro-channels)

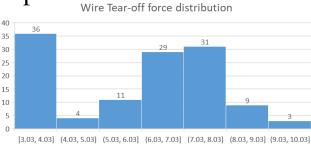
- Four point probe Resistivity Measurement (Chang Min Four)
 - Metal sheet resistance

Al 1 um	Rs (Ω/□)	Rs St. deviation (Ω/\Box)
A-11	33.1E-3	1.3E-3
A-13	42.3E-3	4.4E-3
A-14	42.3E-3	4.9E-3

• Test structures (optical, CBR)

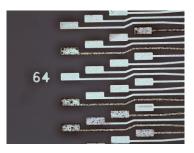


A-20, Al 0.5um	Small (avg.)	Wide (avg.)
Rs (Ω/□)	62.74E-3	63.18E-3
Rs St. deviation (Ω/\Box)	3.44E-3	3.48E-3
Weff (um)	15.02E+0	24.32E+0
Weff St. deviation (um)	236.31E-3	321.04E-3


<u>Metal w/ µ-channels</u> – Test methods

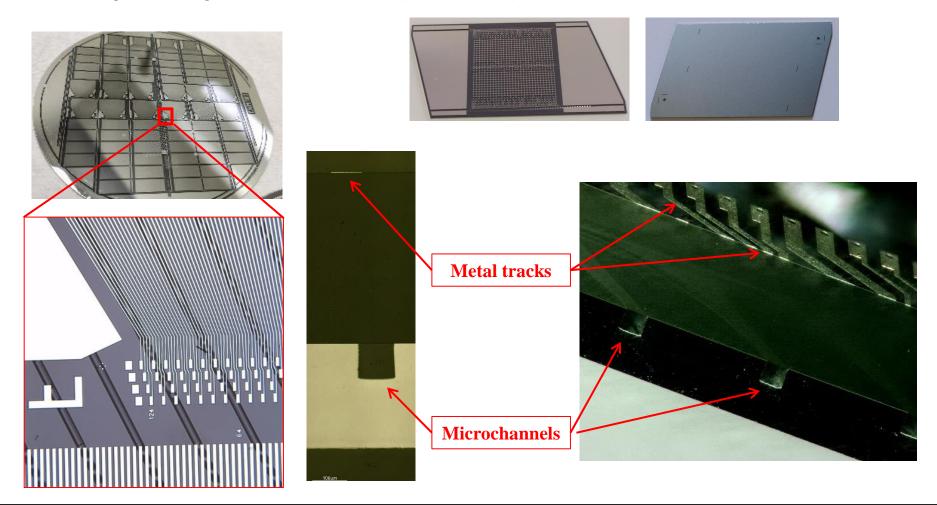
Metal evaluation (in assembly)

- Wire-bonding pull tests
 - \succ 7x7 array, 3 wires in each point. 25 um Al wire.
 - Test performed on **Pre-processing** blanket sample
 - No parameter optimization
 - Bonding on full wafer
 - Final results on-going
 - Test performed on **Post-processing** blanket sample
 - The Bad adherence of Al layer on Silicon.
 - Problematic wire-bonding & pull tests
 - See optimization below

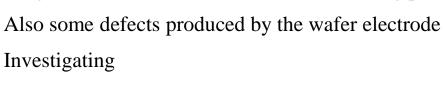

Bonding point

30

5



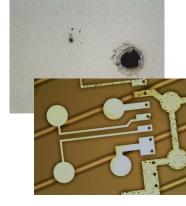
Current Status - Results

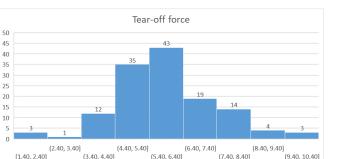


• Successful integration of micro-channels in silicon interposers with integrated signal (RDL) – **Pre-processing**

Current Status - Results

Process modification to place the metal on the Silicon side.


the glass wafer, inherent to the anodic bonding process


- \geq Good metal results in blanket wafers
- Final assemblies and tests on-going

 \geq

 \geq

Post-processing

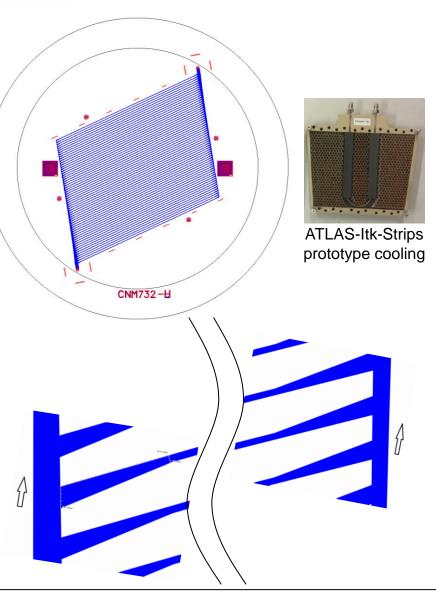
- Optimization of metal deposition process
 - Better metal test results on blanket wafers \geq
- Still some localized problems observed in the metal layer

Could be derived from the ion displacement within

 \geq

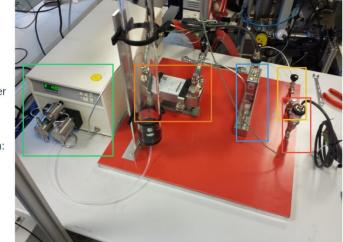
- Technology for embedded microchannel fabrication demonstrated
- Fluidic and thermal simulations and tests of the initial prototypes
 - ➢ Good hydrodynamic and thermal behavior
 - ➢ In good agreement with simulations
- Successful integration of micro-channels in silicon interposers with integrated signal (RDL)
 - Good tests results at the different technological steps
- Optimization needed for some technological alternatives
 - Metal on Silicon
 - Eutectic and fusion bonding
- Thermal and fluidic tests with new prototypes have started
- Working on further integration of microchannel cooling for a full system
 - ➤ Exploring other technological options (microchannels on glass, TSV, ...)
 - Full monolithic integration with CMOS processing

Thank you for your attention

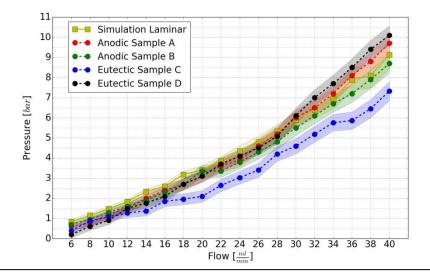


Design Features:

- Full 4" wafer ATLAS-prototype design
- Parallel flux
- Uniform heat removal
- ➢ 60 channels
- Width & depth 100 um, pitch 675 um, separation 575 um
- 15° inclination with respect to manifolds to facilitate flux
- Gradual channel inlet and outlet with 250 um initial width, and 2000 um length to facilitate flux
- Special manifold design developed by simulation to assure uniform flux
- 10° rotation to mis-align channels with respect silicon crystal lattice for mechanical stability



Hydrodynamic tests


Setup

- Green: Pump
- Orange: Heat
 Exchanger
- Blue: Flow Meter
- Yellow: Valve & Filter
- Red: Pressure Sensor
- Transparent column: Fluid Reservoir

Pressure vs. flow tests

- Simulation with laminar flow model
- Good simulation agreement with prototype A, B and D
- Most likely prototype C has some flow problems
- Critical pressure around 31 bar

