Overview of the ATLAS High-Granularity Timing Detector: project status and results

YE, Jingbo on behalf of the ATLAS HGTD Group Institute of High Energy Physics, Chinese Academy of Sciences At HSTD13, Dec. 5, 2023

13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD13)

- The motivation
- The HGTD in a nutshell
- Some highlights: the LGAD sensors, the readout ASIC ALTIROC, and some beam test results; the module assembly and the peripheral electronics board (PEB)
- The status and a summary

The motivation

https://hilumilhc.web.cern.ch/content/hl-lhc-project

Harsh radiation environment up to 2 x 10^{15} n_{eg} cm^{-2}

The motivation

The challenges:

- At the interaction point, about 45 mm along the beam axis, we expect ~ 200 pile-ups, or 1.5 vertices/mm
- Although the ATLAS Inner Tracker (ITk) is designed to cope with this pile-up density, it is challenging when $|\eta| > 2$: σ_{z0} needs to be < 0.6mm to distinguish individual vertex.

The solution:

- Separate the vertices (pile-ups) also in time
- With 50 ps MIP time resolution, the pile-up suppression is expected to improve by a factor of ~ 6

The HGTD is designed to provide timing information for ATLAS at the HL-LHC

物探研究所

- 6.4 m² silicon detector and about 3.6×10^6 channels
- Based on the Low Gain Avalanche Detector (LGAD) sensor, 1.3 mm \times 1.3 mm, able to work in the ATLAS detector environment
- Design time resolution: 30 50 ps/track (start to end-of-life),
- Provide luminosity measurement
 - Count number of hits at 40 MHz (bunch-by-bunch)
 - Goal for HL-LHC: 1% luminosity Uncertainty

The two detectors are located between the barrel and the endcap calorimeters

- Each detector (end) has two disks with sensors mounted on both sides
- Located at ±3.5 m from the interaction point
- Active area coverage: $2.4 < |\eta| < 4$
- Radius: 120 mm < r < 640 mm

230 mr

470 mm

660 mm

nner Ring: 70% sensor overlag

Compared with APD and SiPM, LGAD has

- modest gain (10-50) to increase the S/N
- High drift velocity, thin active layer to decrease the t_{rise} (fast timing), leads better time measurement: $(t + y)^2$

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)$$

- The last few years saw increased efforts in LGAD R&D. The active entities include: IHEP-IME (China), USTC-IME (China), IHEP-NDL(China), FBK (Italy), CNM (Spain), HPK (Japan) ...
- HGTD has finalized the CERN tendering. The preliminary production plan:
 - IHEP-IME: 78% (54% from CERN tendering+24% in-kind contribution)
 - CNM: 12% in-kind contribution
 - USTC-IME: 10% in-kind contribution

Highlight: the beam-tests on LGAD

- Radiation causes boron doping in gain layer less active (acceptor removal). This can be mitigated by carbon-enriched LGAD, in which the carbon "stabilizes" the boron doping,
- The IHEP-IME/FBK/USTC-IME LGAD with carbon
 - Lower the acceptor removal ratio

国科学院高能物理研究所

Making the sensor more radiation tolerant

See CERN Detector seminar https://indico.cern.ch/event/1088953/

[G.Paternoster, FBK, Trento, Feb.2019]

Single Event Burnout (SEB)

学院高能物程研究所

- Single Event Burnout (SEB) has been observed in several beam-tests
 - Radiation degrades timing performance due to the loss of gain
 - Increase the bias voltage (HV) to mitigate, but too high HV causes breakdown in the sensor
 - Also observed by CMS/ATLAS/RD50 teams
- A safe zone has been defined
 - Safe zone <11 V/μm, in our case (LGAD 50 μm) the maximum voltage is 550 V

ATLAS HGTD Preliminary

HSTD13 Dec. 3 - 8, 2023, Vancouver

約2.4 完新 Highlight: the readout ASIC ALTIROC

ALTIROC (based on a CMOS 130 nm technology)

- Has 225(15x15) channels, matching the sensor number and pad size (1.3mm x 1.3 mm)
- Measure the Time Of Arrival (TOA), Time Over Threshold (TOT, for time walk correction) of each sensor
- Minimum discriminator threshold: 2 fC
- Timing resolution: Jitter < 25 ps @ 10 fC and <65 ps @ 4 fC
- ALTIROC prototypes
 - **ALTIROC1:** 25 (5x5) channels, with all <u>analog</u> functionalities, tested
 - ALTIROC2: a full-scale prototype of 225 (15x15) channels, including all functionalities, tested
 - ALTIROC3: the radiation-tolerant version of ALTIROC2 (under test)

Highlight: the readout ASIC ALTIROC

Beamtest results:

• ALTIROC1

- Confirm the performance of analogue circuits
- A fit of TOA as a function of TOT is used to calculate for the corrections of time-walk
- After the correction, the estimated resolution is about 46 ps
- The estimated jitter contribution is about 39

ALTIROC2

• 100% efficiency for each pixel outside gaps

Hit Efficiency = <u>the reconstructed tracks with a hit seen by ALTIROC</u> all reconstructed tracks that hit module area

A gap in the inter sensor pad region is 65.3 +/ 0.2 μm defined at efficiency below 50%

HSTD13 Dec. 3 - 8, 2023, Vancouver

YE, Jingbo

Highlight: module assembly and the PEB

Jigs and pick-and-place machine are being developed

pick-and-place machine

中国科学院高能物理研究所

Picking flex

Jigs for module assembly

HSTD13 Dec. 3 - 8, 2023, Vancouver

HSTD13 Dec. 3 - 8, 2023, Vancouver

Highlight: module assembly and the PEB

The heater demonstrator

国科学院高能物理研究所

- 19 silicon heaters mounted on a single stave
- Representing modules dissipating heat
- on the cooling plate (CO₂ cooling)

The DAQ demonstrator

- A minimum system for the full chain readout, from the module emulator boards to the FELIX board
- Support up to 14 modules with two lpGBTs and one VTRx+
- Timing
 - Up to 3 modules @ 1.28 Gbps
 - Up to 7 modules @ 640 Mbps
 - Up to 14 modules @ 320 Mbps
- Luminosity
 - 7 modules @ 640 Mbps

The heater demonstrator

The DAQ demonstrator

Good progress in LGAD, meeting the requirements of HGTD

- Carbon enriched LGADs meet radiation tolerance requirements
- Sensor pre-production has started
- Two rounds of the full-size readout ASICs ALTIROC have been prototyped, so far all circuit blocks are functional, modules with ALTIROC3 are under test
- Module assembly is making progress
- The Peripheral Electronics Boards are being developed and tested
- Two demonstrators are used to check heat removal and the full readout chain
- The next milestones:
 - 2023: Start the PEB and LGAD sensor production, (met)
 - 2024: Start the ALTIROC ASIC, Module and the detector unit production,
 - 2026-2027: the HGTD detector Integration at CERN, and the installation.

Thank You! And Questions?

Backup Slides

overview of contributions to the time resolution:

ALTIROC: ASIC architecture

Repeat for 225 channels

Efficiency of track isolation requirement for forward e⁻

Suppression of pile-up jets

Timing resolution per-hit and per-track

