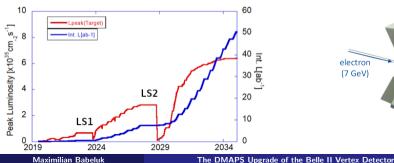
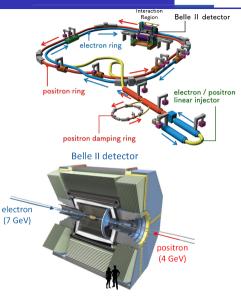
The DMAPS Upgrade of the Belle II Vertex Detector

Maximilian Babeluk

on behalf of the Belle II VTX collaboration

13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors

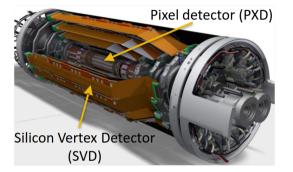

Dec 8th 2023



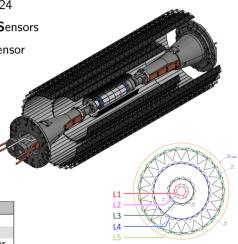
The Belle II Experiment

ÖAW AUSTRIAN ACADEMY OF SCIENCES

- Located at the SuperKEKB collider in Tsukuba/Japan
- Asymmetric $e^+ e^-$ collisions
- $\sqrt{s} = M_{\Upsilon(4S)} = 10.58 \, \text{GeV}$
- World record peak luminosity, exploring new physics
- Currently: commisioning after Long Shutdown 1 (LS1)
- Restart early 2024



The Current Vertex Detector


- Two technology system
- PXD:
 - 2 Layers of DEPFET pixel sensor
 - $\bullet~\sim 10\,\mu m$ spatial resolution
 - 20 µs integration time
 - ⇒ Cannot contribute to track finding
 - See <u>PXD Talk</u> from Jannes Schmitz
- SVD:
 - 4 layers of double sided strip sensor
 - 3 ns Cluster time resolution
 - 3% Occupancy limit (6% with hit-time reconstruction + BG rejection)
 - Expected occupancy up to 4.7% after LS2 (large uncertainty)
 - ⇒ Little safety margin in occupancy
 - \Rightarrow Trigger latency limited to 5 μs by SVD readout
 - See SVD Talk from Alice Gabrielli

- $\bullet\,$ Planned for LS2 \sim 2028, CDR will be published early 2024
- 5 straight layers with Depleted Monolithic Active Pixel Sensors
- Identical chips on all layers: Optimized BELIe II pIXel sensor
- Different features enabled on different layers
- L1 & L2 (iVTX):
 - All silicon ladders
 - Air cooling (constrains power)
- L3 to L5 (oVTX):
 - Carbon fiber support frame
 - Cold plate with liquid cooling

	L1	L2	L3	L4	L5	Unit
Radius	14.1	22.1	39.1	89.5	140.0	mm
# Ladders	6	10	8	18	26	
# Sensors	4	4	8	16	48	per ladder
Expected hitrate*	19.6	7.5	5.1	1.2	0.7	MHz/cm^2
Material budget	0.1	0.1	0.3	0.5	0.8	% X ₀

*: Large uncertainties due to beam background extrapolation, possible changes in IR (interaction region)

OBELIX Key Requirements

1. High hit efficiency at demanding hitrates with sufficient timesamping

- Matrix inherited from TJ-Monopix2
- See <u>CMOS Talk</u> from Lars Schall

2. Handling trigger latency of the Belle II experiment (up to $10 \,\mu s$)

- New implementation of digital periphery
- Simulation to validate performance

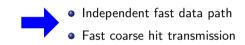
- 3. Power dissipation:
 - air cooling of inner layers
 - liquid cooling of outer layers

4. Little space for cables inside detector

Optimized digital logic with optional features

- On chip voltage regulators
 - 2 LVDS downlinks for groups of chips (Rx)
 - 1 or 2 LVDS uplink(s) per chip (Tx)

The DMAPS Upgrade of the Belle II Vertex Detector



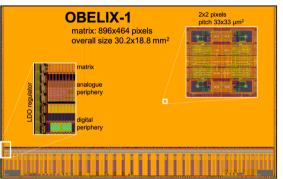
OBELIX Optional Features

5. Incresed timing resolution at expense of power

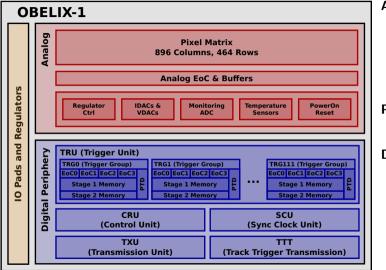
- Precision timing module in periphery (PTD)
- Offline timing annotation

6. Contribution to Belle II Trigger

These features require significant power: Only switched on for liquid cooled layers L3 to L5


ADEMY O

The OBELIX chip



- Matrix inherited from TJ-Monopix2, size adjusted
- 464 rows and 896 columns
- Timestamp resolution: \sim 50 ns
- Up to 10 µs trigger latency
- $\bullet \ \ \text{Power:} \ < 200 \ \text{mW}/\text{cm}^2$
- TID tolerance: 1 MGy
- $\bullet~$ NIEL tolerance: $5\times10^{14}\,n_{eq}/cm^2$
- $\bullet\,$ Hitrates up to $120\,MHz/cm^2$
- ⇒ Hitrate spikes due to injection background
- ⇒ Generous margin for all scenarios (optimistic, normal, pessimistic beam background)

Analog:

- Column drain architecture from TJ-Monopix2
- Monitoring ADC
- Temperature sensors

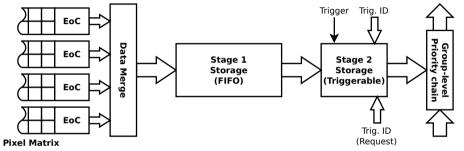
Power:

• On-chip LDOs

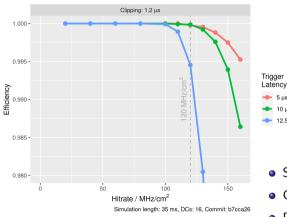
Digital:

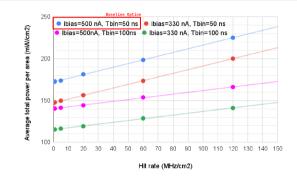
- TRU: Pixel readout, trigger processing
- PTD: Part of TRU for precision timing
- TTT: Fast transmission in parallel for contribution to Belle II Trigger

₩ НЕРНҮ


Relle 1

OBELIX Trigger Group (TRG)


- Trigger memory: 112 Tigger Groups, for 8 columns each
- Sophisticated 2 stage memory design
- Stage 1: Pre-trigger buffer SRAM, low power
- Stage 2: Associative memory to match trigger, power hungy
- Buffer sizing driven by power and hitrate, evaluated with extensive simulations



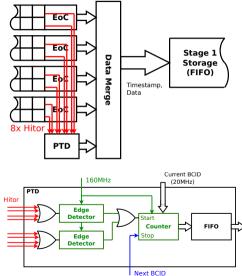
Trigger System: Simulations

5 118 10 us 12.5 µs

- Simulation includes: clustering & charge/ToT conversion
- Calibrated with TJ-Monopix2 results
- Power 10% above budget for 120 MHz/cm²
- Clock frequency or analog bias current could be reduced

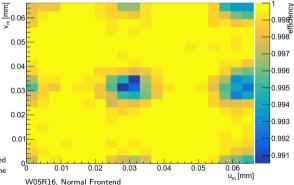
AUSTRIAN

CADEMYO


SCIENCES

Peripheral Time to Digital converter

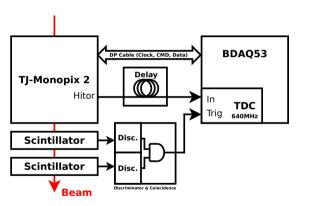
Pixel Matrix


- Hitor: all comparator outputs of one column in an OR-chain (asynchronous)
- PTD: precision timing better than Timestamp (50 ns)
- Sampling: 2.95 ns period (169.7 MHz DDR)
- Power hungry feature: disabled in iVTX
- Little overhead when disbaled (Little die space, clock can be turned off)
- Resolution limited by timewalk and PVT (process, voltage, temperature) variation
- Calibration necessary

- First week: Regular measurements with telescope (efficiency and angular scans for depletion)
- Second week: Timing measurements, parasitic to RD50 MPW3 Testbeam
- Beamtelescope with Alpide chips (Duranta)
- Spatial Resolution $< 10\,\mu m$ for all chips

Chip SN	Irradiation	Substrate
W02R05	None	Epi
W05R16	$p^+,~~5 imes 10^{14}~{ m n_{eq}}$	Epi
W08R19	None	Epi
W14R12	None	Cz
Chip SN	Frontend	Efficiency
Chip SN W05R16	Frontend Normal	Efficiency 0.9999
		J
	Normal	0.9999

The measurements leading to these and following results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).


AUSTRIAN

CADEMY OF

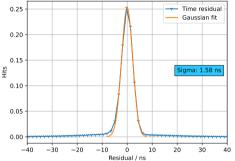
SCIENCES

OA\

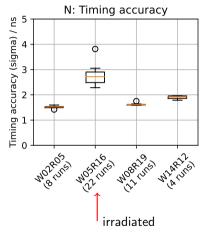
Timing Measurement Setup

- TDC module of BDAQ53 firmware measures delay between scintillator and Hitor
- TDC words inserted into data stream
- TDC data is matched to hits offline
- Whole chip has one Hitor line: ambiguities arise
- ToT is measured by both, TJ-Monopix2 and TDC module
- Therefore used to match and cut $(\pm 25 \text{ ns cut})$

AUSTRIAN


CADEMY O

Timing results



- Three corrections applied:
 - Column delay (Hitor)
 - Row delay (Hitor)
 - Timewalk
- Tail in distribution: wrong associations
- Resolution: < 2 ns (unirradiated), < 3 ns (irradiated W05R16)

Maximilian Babeluk

Summary and Outlook

- The OBELIX chip is based on TJ-Monopix2
- Additional features in OBELIX (all on-chip):
 - Voltage regulators
 - ADC and temperature sensors
 - Trigger logic, up to $10\,\mu s$ latency at $120\,MHz/cm^2$
 - Precision timing module
 - Fast transmission for trigger contribution
- Development and verification is entering final stage
- Aiming submission early 2024

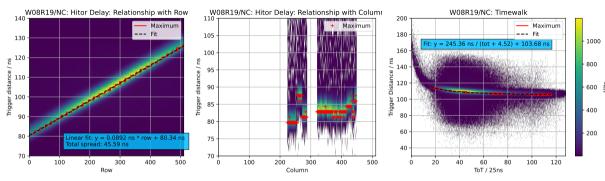
DESY TB Crew Summer 2023

OBELIX Designers Meeting Fall 2023

The DMAPS Upgrade of the Belle II Vertex Detector

Backup slides

Maximilian Babeluk


The DMAPS Upgrade of the Belle II Vertex Detector

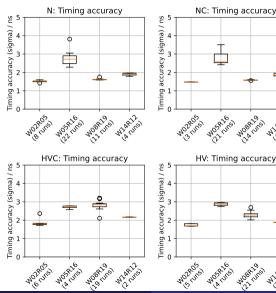
Dec 8th 2023 16 / 16

Timing Corrections

• Iterative fit

• Halos caused by wrong associations

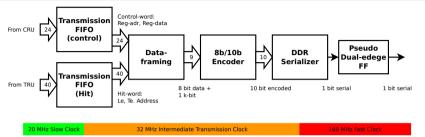
Timing Accuracy Analysis


WIARIZ

₽

runs

(A runs)



- N: Normal Frontend ۲
- ٠ NC: Normal Cascode Frontend
- ٢ HV: High Voltage Frontend
- HVC: High Voltage Cascode Frontend

WIARIA

Transmission Unit (TXU)

- Most TXU components run at 32 MHz (160 MHz/5) intermediate clock
- Serializer needs one byte (10 bit encoded, DDR) per 32 MHz clock cycle
- This allows simple state machines
- Clock boundary to 20 MHz clock is done via FIFO
- Hits are sent in frames sharing the same leading edge BCID

AUSTRIAN

CADEMY OF

SCIENCES