

Defect level identification of ATLAS ITk Strip Sensors using DLTS

Christoph Klein

J. Dandoy, D. Duvnjak, C. Jessiman, J. Keller, T. Koffas, E. Staats, R. Vandusen, V. Fadeyev, Y. Unno, M. Ullan

13th Hiroshima Symposium, Vancouver, 3-8 December 2023

Motivation:

- > implement trap parameters in TCAD (see poster contribution by C. Jessiman)
 - > precise simulations of irradiated ITk sensors
- measurements on MD8 diodes

Introduction

- square 8mm x 8mm n⁺-in-p diodes
- produced as test structure on same wafers as main ITk Strip Sensors
- tests performed on unirradiated and irradiated devices
 - unirradiated halfmoons from batch with high current main sensors + reference samples from 'normal' batch
 - irradiated samples with irradiation done at CYRIC with 70 MeV protons
 - 3 different fluences (10% uncertainty) and annealed 80min@60°C:

4.57e14 n_{eo}/cm^2 8.34e14 n_{eo}/cm^2 1.54e15 n_{eo}/cm^2

samples mounted on heatsinks and wire bonded contacts for implant and GR

UNIRRADIATED

- IV curves taken at room temperature on DLTS setup
- W153-179 from a batch with high current main sensors; W418-421 for reference
- incidentally W153, W418, W420 with highest current

- QA results
- leakage current shows clear scaling with fluence
- higher currents allow for use of I-DLTS, but can limit usefulness of capacitance transients

UNIRRADIATED

- CV scans did not show significant differences between samples
- depletion width and doping concentration can be derived from CV curves
- full depletion still present at highest irradiation level
 - limited acceptor removal, N_{eff} similar to before irradiation
- DLTS setup can only bias up to 10V,
 - low bias readings of irradiated samples not useful for calculation of depletion width and carrier concentration

Measurement methods: DLTS/I-DLTS

- 1. DUT is under constant reverse bias
- filling pulse with specific voltage V_P and duration is applied, adjusted to trap states of interest
 - V_P as reduced reverse bias → majority carrier traps (holes)
 - V_p slight forward bias → minority carrier traps (electrons), if capture rate much larger than competing majority traps
- 3. bias back to prior level, measure transients
 - capacitance or current transients, depending on sample
- usually average O(100) transients per temperature point
- plot ΔC or ΔI vs. temperature for fixed rate window corresponding to emission rate
- analysing spectrum for varying rate window [t₁; t₂] yields Arrhenius plot of trap levels

CHRISTOPH KLEIN - HSTD13

- 1. DUT is under constant reverse bias
- filling pulse with specific voltage V_p and duration is applied, adjusted to trap states of interest
 - V_P as reduced reverse bias → majority carrier traps (holes)
 - V_P slight forward bias → minority carrier traps (electrons), if capture rate much larger than competing majority traps
- 3. bias back to prior level, measure transients
 - capacitance or current transients, depending on sample
- usually average O(100) transients per temperature point
- plot ΔC or ΔI vs. temperature for fixed rate window corresponding to emission rate
- analysing spectrum for varying rate window [t₁; t₂] yields Arrhenius plot of trap levels

Unirradiated diodes: DLTS spectra

- DLTS measurements performed for different bias voltage and filling pulse settings
 - common trap at ~175K seen in all diodes
 - negative offset observed, mitigated with GR at GND
 - peaks at ~100K not consistent between different scan parameters; no clear Arrhenius plot

only true additional defect observed for W153 at ~225K

 confirmed over multiple runs and 2 diode samples

Unirradiated diodes: DLTS spectra

- DLTS measurements performed for different bias voltage and filling pulse settings
 - common trap at ~175K seen in all diodes
 - negative offset observed, mitigated with GR at GND
 - peaks at ~100K not consistent between different scan parameters; no clear Arrhenius plot

only true additional defect observed for W153 at ~225K

 confirmed over multiple runs and 2 diode samples

Unirradiated diodes: Arrhenius analysis

T² / e [K²s]

- good trap saturation for 10ms filling pulse
 - flat relative trap concentration as indicator
- increased transient amplitude for larger bias
 - no changes to overall spectrum
- Arrhenius plots from rate window analysis
 - derive trap parameters from linear fits

T _{median} [K]	E _T [meV]	σ [cm²]
175 (common)	310 – 390	10-14 - 10-13
225 (W153 only)	443 ± 6	7.5 x 10 ⁻¹⁵ ± 1.4X

$$\ln(\tau_e T^2) = -\ln\left(\sigma_{n,p}^{\text{eff}} \Gamma_{n,p}\right) + \frac{E_A}{k_B T}$$

electron

traps

hole

traps

•

example: B_S VO_i

-

- Double-Pulse DLTS (DDLTS) measured at temperature of observed trap
- progressively increasing filling pulse at fixed bias \Rightarrow deep level trap profile
- fixed pair of filling pulses at increasing measurement bias \Rightarrow field strength dependence; indicates acceptor/donor state
- increasing filling pulse duration \Rightarrow capture kinematics; defect type

<u>•</u>

 $P_{S} = C_{i}O_{i} = TDD$

-0

0 +

VV

M. Moll, Ph.D. thesis

 E_i

 E_V

Unirradiated diodes: deep level profile & capture process

- 175K trap has constant concentration throughout depletion width
- 225K trap has decreased concentration close to junction
- trap saturation plateaus for filling pulse $\gtrsim 1$ ms
 - observed dependence indicates point defect

ATLAS X

Irradiated diodes: I-DLTS spectra

- capacitance transients did not yield reliable results
 - insufficient trap saturation, high trap concentration
 - exponential increase in capacitance for T > 260K
- I-DLTS spectra very clean
 - peak >270K could not be fully explored due to high current
- slight shift of median peak temperature
- additional traps observed using injection pulse in double-pulse setting

Irradiated diodes: I-DLTS spectra

- capacitance transients did not yield reliable results
 - insufficient trap saturation, high trap concentration
 - exponential increase in capacitance for T > 260K
- I-DLTS spectra very clean
 - peak >270K could not be fully explored due to high current
- slight shift of median peak temperature
- additional traps observed using injection pulse in double-pulse setting

Unirradiated diodes: Arrhenius analysis

 good trap saturation for 100ms filling pulse

- higher trap concentrations in devices irradiated to higher fluences
- no significant variation in trap parameters with higher fluence

Φ [n _{eq} /cm²]	T _{peak} [K]	E _T [meV]	σ [cm²]
4.57e14	229	452 ± 4	2.7 x 10 ⁻¹⁴ ± 1.2X
8.34e14	228	442 ± 7	1.5 x 10 ⁻¹⁴ ± 1.5X
1.54e15	233	469 ± 3	3.2 x 10 ⁻¹⁴ ± 1.2X

Irradiated diodes: I-DLTS Arrhenius analysis

- forward injection pulse
 - remove large signal with doublepulse measurement
- 2-Gaussian deconvolution yields second trap contribution in peak flank
 - larger uncertainties on fit results of secondary peak component

$\Phi [n_{eq}^2/cm^2]$	T _{peak} [K]	E _T [meV]	σ [cm²]
4.57e14	234	521 ± 7	6.9 x 10 ⁻¹³ ± 1.4X
	248	457 ± 28	7.3 x 10 ⁻¹⁵ ± 3.6X
8.34e14	237	539 ± 9	1.4 x 10 ⁻¹² ± 1.5X
	254	686 ± 42	1.9 x 10 ⁻¹⁰ ± 6.8X
1.54e15	238	516 ± 6	2.3 x 10 ⁻¹³ ± 1.4X
	251	465 ± 41	4.2 x 10 ⁻¹⁵ ± 6.5X

- Thermal Admittance Spectroscopy (TAS)
- measure C/R/G/Phase as a function of temperature and frequency
 - steady-state measurement
 - defect contribution depending on test signal frequency and temperature
- steps in C or peak in G/R temperature dependence indicate thresholds for new traps contributing
 - steps/peaks yield Arrhenius plots of corresponding trap states

- TAS yielded good results for irradiated diodes
 - no need to optimize filling pulse parameters for trap saturation
- trap parameters consistent with results from I-DLTS
 - no changes at different levels of irradiation

$\Phi [n_{eq}/cm^2]$	T _{median} [K]	E _T [meV]	σ [cm²]
4.57e14	230	449 ± 6	4.2 x 10 ⁻¹³ ± 1.3X
8.34e14	228	435 ± 4	2.7 x 10 ⁻¹³ ± 1.2X
1.54e15	232	456 ± 5	5.4 x 10 ⁻¹³ ± 1.3X

Discussion and Conclusion

Discussion

- T_{peak} and E_T of common H(175) defect in unirrad. diodes consistent with interstitial carbon interstitial oxygen (C_iO_i) complex and other carbon-related defects (e.g. K-centre/VOC complex)
- common H(230) defect in irradiated diodes consistent with reported vacancy-clusters
 - > H(225) defect in unirrad. W153 has similar parameters
 - also found in CMS test structures with major contribution to high leakage current A. Junkes, Ph.D. thesis

Conclusion

- multiple trap parameters obtained for both unirradiated and irradiated diode samples of ITk Strip Sensors
- DLTS setup proven effective
 - standard C-DLTS and double-pulse variants yield precise results for unirradiated devices
 - I-DLTS and TAS more effective in highly irradiated samples due to significant trap concentration

Acknowledgements:

This work was supported by the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada. This work is part of the Spanish R&D grant PID2021-126327OB-C22, funded by MCIN/ AEI/10.13039/501100011033 / FEDER, UE. The work at SCIPP was supported by the US Department of Energy, grant DE-SC0010107.

12eV

ĩ

Backup

Double-Pulse DLTS (DDLTS): capture process

- transients with filling pulse from 5us to 200ms
- trap saturation for filling pulse ≥1ms

