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Motivation
For Digital SiPMs
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Silicon Photomultipliers
Digital Devices with Analog Digital Readout

 Array of SPADs (Single-Photon Avalanche Diodes), sizes  
between 15 and 70 um

 Single photon detection efficiencies reach O(50 %)
 Fast peaking time, reaching time resolutions of few 10 ps 
 Typically with analog readout of all SPADs in parallel
 More light: number of firing SPADs approx. proportional 

to photon flux (within some constrains)
 BUT: The information a single SPAD provides is DIGITAL
 Add CMOS circuitry

 No loss of information by digitizing SPAD signals
 Profit from digital signal processing
 E.g. resolve position of firing SPADs
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[H. Kolanoski and N. Wermes]

https://doi.org/10.1080/00107514.2021.1959644


The Circuit
A Digital Silicon Photomultiplier –
Designed in LFoundry‘s 150-nm CMOS
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The Readout Scheme
Key Components

 Four SPADs make a pixel

 Variable quenching resistance (Vquench)

 Masking (pixel not powered)
 2-bit hit counter (2 readout modes)
 Wired-or connection to quadrant TDC

 16x16 pixels form quadrant unit with
 12-bit TDC, time stamps of 1st firing pixel per frame; configurable validation logic
 Per-frame hit-matrix readout

• This looks like a pixel detector! Can we operate it like a pixel detector?
• What are its MIP detection properties? Efficiency? Spatial and temporal resolution?
• Are 4D tracking applications feasable?

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023



Page 7

The Pixel
Four SPADs Make a Pixel

 Four library p+/n-well SPADs, 20 x 20 um2, in parallel
 Surrounded by cathode and p-well ring for cross-talk 

minimization
 Pixel area 69.6 x 76 um2, fill factor 30 %
 Shared front-end below SPAD group

Example of a p+/n-well SPAD in a CMOS process
[F. Acerbi and S. Gundacker]
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https://doi.org/10.1016/j.nima.2018.11.118
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Caribou
A Versatile Readout System

 Developed by CERN, BNL, and DESY
 Fast, simple and low-cost implementation & tests of sensors, 

already 16 devices e.g. ATLASPix, CLICTD, ...
 System on Chip (SoC) Board – CPU and FPGA on same die

 A CPU runs DAQ and control software
 An FPGA runs custom hardware for data handling and 

detector control
 Control and Readout (CaR) Interface Board

 Physical interface from the SoC to the sensor
 Peripherals needed to interface and run the chip: power 

supplies, ADCs, voltage/current references, LVDS links, etc.
 Chip Board – passive & detector-specific components

Chip Board  Chip Glued & Bonded

Caribou DAQ System

HV

Al Case with 
Chipboard and 

ASIC
Control and 
Read (CaR) 

board

SoC Board
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Characterization
Laboratory



Page 10

Lab – IV and Breakdown Voltage
Because Breakdown is what we Need

 Scanning the bias voltage in the breakdown region
 Different temperatures (climate chamber, humidity ~ 0%)
 Shift of breakdown voltage with temperature visible
 Avoid secondary breakdown for operation

 Various definitions of breakdown voltage around
 We used the “relative derivative“
 Measured breakdown as a function of temperature
 18.9 V at 20°C and about 20 mV/K

Reaching Geiger mode 
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Lab – DCR
Dark Count Rate

 Reading frames in dark environment
 Strong dependence on temperature and over voltage

 Cooling helps!
 104 Hz per pixel corresponds to 6.25 Hz/um2

 Pixel masking helps!
 Masking noisiest 10 % reduces noise by about 40 %
 Observed also an impact on leakage current

 Interesting case: single pixel determines breakdown

over voltage 2 V

Thermal excitation → carriers → discharge
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TDC Characterization
Measuring TDC Bin-Width Variations

 Studying the fine TDC with nominal binning of 77 ps
 Expecting constant occupancy (on short time scale)
 Variations are due to delay variations
 Not exploiting full dynamic range of 32 bins!

 Find corrections statistical code density analysis
 The width of a bin corresponds to its fraction of the total 

entries times the clock period (~2.5 ns)
 Mean bin width 93.1 ps
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Laser Measurements
Measuring Propagation Delays

Setup
 DUT placed on an x-y stage; laser optical system on a z-stage
 1054 nm pulsed laser; focus width < 10 um in beam waist
 Laser in sync. with the DAQ clock
 Scan chip pixel-by-pixel, measure Time of Arrival (ToA) 

FPGA 
Board

CarBoard

DUT

X-Y stagesZ stage

Optical system

Laser
Source

Trigger Data

Dark box

 Clear function of 
distance to TDC

 Different offsets for 
each quadrant

col index

ro
w

 in
de

x

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023



Characterization
Beam Tests

reddit.com/r/ScientificArt/

https://www.reddit.com/r/ScientificArt/comments/jwrvlb/tracks_of_electrons_and_positrons_through_a/
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Our Setup
Evolving...

March 2023

Telescope 
Downstream Arm 

Telescope 
Upstream Arm 

VETO

Upstream
Scintillators

Downstream
Scintillator

dSiPMs

N2

Cooling 

e-
Setup in March 2023
 Main goal: measure time resolution
 Triggering using 3 scintillators in coincidence

 4th scintillator with hole vetoes tracks out of acceptance
 For the time resolution measurement we take 2 dSiPMs

 Not easy to find time reference better than 100 ps
 Assume 2 DUTs have similar resolution

 Derive residual Δt = tDUT1 – tDUT2

 DUT resolution σDUT = σΔt / √2

 Custom cold box to allow for temperatures down to -5°C
 Estimated track resolution around 4 um

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023
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Hit Detection Efficiency
Fill Factor Limited

 Analysis using Corryvreckan

 Reconstruct tracks using the beam telescope
 Associate hits on DUT using spatial cuts

 Ε = Nassoc / Nreco

 In-pixel efficiency
 Inefficient outside of SPAD region
 Smearing due to track resolution (larger than expected)

 Over all efficiency – determined by fill factor
 About 30 %, corrected for dead time and fake hit 

contributions
 Small voltage dependence above breakdown observed

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023

lower half of a pixel

https://gitlab.cern.ch/corryvreckan/
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Spatial Resolution
Determined by Pixel Size

 Difference between reconstructed hit and interpolated 
track position Δx = xtrack - xhit

 Double peak feature due to in-efficient region between 
SPADs (remember previous slide!)
 Added Corryvreackan feature: Define arbitrary fit 

function for DUT alignment MR

 Unavoidable contribution from dark counts (circular 
background distribution)

 Signal described by double box convolved with Gaussian
 Does the track resolution explain the width of the 

Gaussian?
 Achieve spatial resolution on the order of 20 um

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023

https://gitlab.cern.ch/corryvreckan/corryvreckan/-/merge_requests/597


Page 18

Time Residuals
Measuring the Time Resolution

Time residual between two dSiPMs Δt = tDUT1 – tDUT2

 Each of them contributes 3 cases
 Fast signal; Gaussian with width between 35 and 55 ps
 Slow signal; exponential tail (about 15 %)
 Noise; flat background

Origin of the tails
 Left: Intercepts of tracks with associated hits
 Right: same, but excluding fast component
 Slow response associated to SPAD edges
 Also visible in laser measurements

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023

preliminary
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Time Residuals
Measuring the Time Resolution

Time residual between dSiPM and ref. Δt = tDUT0 – tTLU

 Fast signal; dominated by time reference
 Trigger scintillator + TDC in AIDA TLU

 Slow signal; slow DUT response

Origin of the tails
 Left: Intercepts of tracks with associated hits
 Right: same, but only for slow component
 Slow response associated to SPAD edges
 Also visible in laser measurements

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023

slow component
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MIP Timing
Timing Plane Application

 Spatial and temporal resolution are promising
 Hit detection efficiency too low

 30 % fill factor probably not practical
 Fill factor can be optimized but will always be limited

 F. Carnesecchi, et al. increased MIP detection efficiency 
of SiPMs due to Cherenkov effect in encapsulation
 We started studies in that direction!

 Keep spatial resolution on the order of pitch
 First photon counts → suppress tails in timing
 How much will the efficiency increase?
 How much will it cost in material budget? 

Example: encapsulated Hamamatsu SiPMs

https://doi.org/10.1140/epjp/s13360-023-04397-0


Summary
Introduced a digital silicon photomultiplier produced 

in an LFoundry‘s 150-nm CMOS process

Test-beam characterization
 Hit detection efficiency (MIPs): > 30 %
 Spatial hit resolution (MIPs): ~ 20 um
 Temporal resolution (MIPs): ~ 50 ps

Submitted first paper on circuit design and laboratory 
characterization (already available on ArXiv)

We are eager to test dSiPM + radiator in the beam!

 

Yes, like a pixel detector!

https://arxiv.org/abs/2311.13220
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A Single Photon Avalanche Diode
Basic Building Block of a SiPM

 Strong doping gradient generates strong filed → Geiger mode amplification
 Quenching of discharge by lowering the bias voltage (quenching resistor)
 Gain on the order of 105 to 106 → counting device sensitive to single photons
 Photon interactions (optical energy range)

 Exciting single electron from to conduction band
 Penetration depth between 0.1 um (blue) and 10 (red) um

 Photon detection efficiency: fill factor x quantum efficiency x breakdown 
probability

 Electron interactions (GeV energy range, close to minimum)
 50 to 100 electron-hole pairs per micrometer
 Deposition along electron trajectory

[F. Acerbi and S. Gundacker]

https://doi.org/10.1016/j.nima.2018.11.118


Page 24

Charged Particles
And Their Interaction with Matter Silicon

 Electrons (GeV energy range, close to minimum)
 Energy loss dominated by ionization and excitation
 Radiative losses below 1 %, limited contribution to 

signal in thin Silicon detectors
 Straggling functions are highly skewed due to rare large 

energy depositions
 Mean ionization energy 3.67 eV per electron-hole pair
 Signal on the order of 50 to 100 electron-hole pairs 

micrometer (depends on material thickens)
 Deposition along electron trajectory

 Similar for other charged particles around energy loss 
minimum (MIPs)
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Optical Photons
And Their Interaction with Matter Silicon

 Photons (optical energy range)
 Internal photo effect: dominant contribution from 1 eV 

to several 10 keV [cw]
 Exciting 1 electron from valance to conduction band
 Minimal energy (band-gap) 1.12 eV, corresponding 

wavelength 1100 nm (UV)
 Indirect band-gap transition requires phonon interaction

 Strong rise in absorption probability to 3.4 eV
 Temperature dependence

 Penetration depth between 0.1 and 10 um
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Timing Diagram
Frame Based Readout
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Validation Logic
Suppressing Noise

 Implemented for each quadrant separately
 Hit within a row generates „true“ for said row
 Cascade of AND/ OR operations between rows
 Allows to select certain hit patterns

 E.g. at least 1 hit in each row
 Or at least 1 hit per row in a pair of rows

 Helps to discard noise hits if certain signal patterns are 
expected
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TDCs
Time Digital Converters

 Frame clock 3 MHz defines readout frames 333 ns
 System clock 408 MHz used in coarse and fine TDC

 Coarse TDC – ripple counter
 7 bit, covers 313.7 ns acquisition window

 Fine TDC – taped delay line with delay locked loop
 32 delay elements
 5 bit, nominal binning of 77 ps
 32 to 5 bit encoding
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First Timing studies with LED
Preliminary Results

Timing performance

• From Preliminary LED studies

• TR of the whole system reported

• Quadrant TOA: σ ~120 ps 

• Time differences bw Quadrants: σ ~160 ps

• No correction for propagation delays 

Q1 Q2

Q3 Q4

TDC1 TDC2

TDC3 TDC4

ToA Noise < ToA LED

LED ToA

High light effect 
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Our Setup
The First Shot

Setup in May 2022 – proof of concept, integration test
 Triggering using 3 scintillators in coincidence

 4th scintillator with hole vetoes tracks out of acceptance
 Track time resolution O(1ns) (scintillator + TLU TDC)
 Estimated track resolution around 5 um
 Temperature stabilization ~ 25° C (no cold box)

May 2022

Telescope 
Downstream Arm 

Telescope 
Upstream Arm 

dSiPM

Light Shield 
& Cooling 

VETO

Upstream
Scintillators

Downstream
Scintillator

e-
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Beam Test – Introduction
Test Bench for Particle Detectors – The Tracking Detector Case

Components
 Beam (DESY II 5 GeV, SPS, MAMI;)
 Tracking system, 6 planes of pixel detectors
 E.g. scintillators for timing and triggering
 Device Under Test

y
Z

cooling and 
support

DUT
e
-

telescope upstream 
arm

telescope downstream 
arm

trigger plane

Goals
 Prove/ test integration of prototypes
 Performance characterization

 Detection efficiency
 Resolution in space, time, (energy)

Reconstruct individual charged particles – time and position information

DSiPM | HSTD13 – Vancouver | Finn Feindt | 08.12.2023
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Alignment
Material Budget Imaging

DUT- Trigger Alignment With High Dark Count Rate
 DCR/MIP event distinction impossible before alignment
 dSiPM too noisy to use self trigger

Material Budget Imaging (MBI)
 Amount of scattering is proportional to the thickness of the 

scattering medium in radiation lengths
 Plot width of scattering angle distribution in DUT-plane

Evaluation of MB using Corryvreckan 
 Maximize multiple Coulomb scattering 
 Use the straight line approximation for tracks in the two arms of 

the beam telescope (TrackingMultiplet) 
 Material budget image obtained in global coordinates

Chip glued & bonded (front)Chipboard (back)
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