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Depleted Monolithic Active Pixel Sensor

T. Hemperek, 2018

Hybrid detector MAPS detector Depleted MAPS detector

✔ Optimized individual parts
✔ High rad. tolerance

✗ Cost and labor intensive 
bump-bonding

✔ Reduced material budget
✔ Commercial processes:

● Fast & high volume 
production

● Lower module cost

✗ Sensor not fully depleted
● Not radiation hard 

T. Hemperek, 2018

T. Hemperek, 2018

● CMOS processes offer
high-resistivity substrate

● Bias voltage capabilities (HV)

✔ Strong drift field
✔ Enhanced charge collection
→ Increased radiation tolerance
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Collection Electrode Design Approaches

Small collection electrode:
● Electronics outside charge collection well
● Small sensor capacitance (<5 fF)

– Low analog power budget (noise, speed)
– Less prone to cross-talk

● Longer drift distances
● Potentially regions with low E-field

– Need modifications for radiation hardness

Large collection electrode:
● Electronics inside charge collection well
● Large sensor capacitance O(100 fF)

– Compromises noise, speed, power
– Risk of cross-talk

● Shorter drift distances
● Few regions with low E-field

– Less trapping → radiation hard

I. Caicedo, 2022I. Caicedo, 2022
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Latest Monopix Prototypes

Same fast column drain readout architecture (FE-I3 like)

TJ-Monopix2:
● 180 nm TowerSemi CMOS technology
● Small collection electrode
● ~2x2 cm² matrix with 33x33 μm² pixel pitch
● Substrate resistivity >1 kΩcm

LF-Monopix2:
● 150 nm LFoundry CMOS technology
● Large collection electrode
● ~2x1 cm² matrix with 50x150 μm² pixel pitch
● Substrate resistivity > 2 kΩcm
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TJ-Monopix2 Specifications
● Improved front-end to lower noise and threshold

– TJ-Monopix1 ~350 e- THR and ~16 e⁻ noise
● Observed RTS noise tail

● 7 bit ToT information @ 25 ns
● 3 bit in-pixel threshold tuning

– More in-pixel logic at smaller pixel size
● Triggerless readout
● 4 front-end variations based on proven design from 

predecessor:
– Cascoded version
– AC coupled (HV) front-ends biased via collection node

● Baseline for development of DMAPS  for Belle II upgrade
– Upcoming talk by M. Babeluk K. Moustakas, 2021
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TJ-Monopix2 Modifications
● For TJ-Monopix1 [DOI 10.1088/1748-0221/14/06/C06006]

– Observed efficiency loss to ~70% after irradiation (1e15 neq/cm²) in pixel corners
– Charge loss due to E-field shaping under deep p-well

● Possible improvements:
– Enhance lateral E-field → n-gap or extra deep p-well
– Increase input signal → thick Czochralski (Cz) substrate

● All combinations available for TJ-Monopix2
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https://iopscience.iop.org/article/10.1088/1748-0221/14/06/C06006
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Laboratory Measurements
● Extract mean tuned threshold of ~250 e⁻ and mean ENC of ~6 e⁻ from s-curve scan

– Sufficient for excellent hit-detection efficiency (MIP charge MPV >2500 e⁻)
– Threshold dispersion significantly reduced by 3 bit in-pixel trimming
– No RTS noise tail
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Threshold Oscillation
● Threshold depends on arrival time of signal (leading edge)

– Amplitude O(50 e⁻) → Factor 10 larger than ENC
– Oscillation frequency ca. 5 MHz

● LE/TE sampled with 40 MHz clock in pixel
– Bits of counter toggle in

● Peak of pre-amplifier transfer function 2-10 MHz
– Very sensitive to frequency of counter bits toggling
– Cross-talk cannot be mitigated while LE/TE sampling

● Workaround for injection based scans:
– Reset of 40 MHz clock with respect to injection
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K. Moustakas, 2021
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Beam Tests: Cluster Charge
● Exposed sensors to 5 GeV electron beam at DESY
● Compare standard front-end for 30 μm Epi and 100 μm Cz sensor material

– Thicker Cz material allows higher charge MPV for Cz
● No full depletion reached at -6 V for Cz

– Larger average cluster size for Cz than for Epi material
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TJ-Monopix2 Hit Detection Efficiency
● Comparison of front-end variations for epi substrate with gap in n-layer 

– Measured at approx. 250 e⁻ threshold for all samples
● DC coupled at -6 V on PSUB/PWELL (left, middle), AC coupled +15 V on collection n-well (right)

– Uniform hit detection efficiency >99% with no losses in pixel edges
– Agreement between different modification types

0 10 20 30 40 50 60
column [µm]

0

10

20

30

40

50

60

ro
w 

[µ
m

]

99.95+0.01
0.01 % 99.97+0.01

0.01 %

99.97+0.01
0.01 % 99.95+0.01

0.01 %

Region 1 (Std FE): In-pixel efficiency
for DUT

90.00

91.25

92.50

93.75

95.00

96.25

97.50

98.75

100.00

0 10 20 30 40 50 60
column [µm]

0

10

20

30

40

50

60

ro
w 

[µ
m

]

99.93+0.01
0.01 % 99.94+0.01

0.01 %

99.94+0.01
0.01 % 99.93+0.01

0.01 %

Region 1 (Casc FE): In-pixel efficiency
for DUT

90.00

91.25

92.50

93.75

95.00

96.25

97.50

98.75

100.00

0 10 20 30 40 50 60
column [µm]

0

10

20

30

40

50

60

ro
w 

[µ
m

]

99.86+0.04
0.06 % 99.81+0.05

0.06 %

99.81+0.05
0.07 % 99.89+0.04

0.05 %

Region 1 (AC Casc FE): In-pixel efficiency
for DUT

90.00

91.25

92.50

93.75

95.00

96.25

97.50

98.75

100.00

Standard FE: 99.96% Cascode FE: 99.94% HV Cascode FE: 99.85%



11Dec 8th 2023 Lars Schall – HSTD13, Vancouver

Timing Studies in Beam
● Measure delay between scintillator and HitOr signal with 640 MHz clock
● Estimate in-time ratio of hits in given time window of trigger distance distribution
● For 30 μm epi chip with n-gap modification and standard front-end:

– 99.68% within 25 ns (ATLAS BX frequency)
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LF-Monopix2 Specifications
● Full scale column length with column-drain R/O

– Full in-pixel electronics while reducing the 
pixel pitch by 40% of predecessor

● 6 bit ToT information @ 25 ns
● 4 bit in-pixel threshold tuning
● 6 front-end variations available

– Differing in CSA, feedback capacitance, tuning
● Successfully thinned down to 100 μm thickness 

and backside processed
● Proton irradiated samples up to 2e15 neq/cm² 

available
– Not powered during irradiation
– Annealed 80 min @ 60 °C

LF-Monopix2 (Feb 2021)

LF-Monopix1 (Mar 2017)
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Leakage Current and Gain
● Measure leakage current per pixel at -20 °C environmental temperature

– Breakdown at ~460 V for unirradiated modules
● Increase in leakage current ~5 μA/cm² per 1e15 neq/cm² irradiation step at 100 V
● Extract gain from linear regression of untuned threshold at different global THR settings

– Smaller feedback capacitance → larger gain (and faster rise time of LE)
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Laboratory Tests
● Operated in controlled laboratory environment @ -20 °C
● Uniform threshold distribution at approx. 2 ke⁻ threshold before and after irradiation

– Ca. 40% increase in ENC per irradiation step of 1e15 neq/cm² fluence
– Expected charge MPV of MIP at full depletion ~6 ke⁻
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Depletion Depth of LF-Monopix2
● Get calibrated charge MPV from Landau shaped beam spectrum (5 GeV electrons at DESY)
● Able to fully deplete sensor after irradiation to 2e15 neq/cm²

– Full depletion voltage increases from ca. 15 V to >150 V
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Hit Detection Efficiency Studies
● Hit detection within 25 ns window >99% after 1e15 neq/cm² 

– Measured at 2 ke⁻ threshold and 150 V bias
● Small drop to 97.79% in pixel corners

– Longest drift path and charge sharing

In-pixel, in-time efficiency
(mean 99.15% @ 1e15 neq/cm²)
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Hit Detection Efficiency Studies
● Hit detection and in-time efficiencies >99% for 

all matrices after irradiation to 1e15 neq/cm²
– Measured at 2 ke⁻ threshold and 150 V bias 

voltage (full depletion)
– Increase in in-time ratio for larger gain

front-end variants

● Result before irradiation as reference
– Similar threshold of ~2 ke⁻
– 60 V bias voltage (full depletion)

→ No significant efficiency loss after irradiation
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Conclusion and Outlook
● Successful lab tests with TJ-Monopix2 verify lower threshold and ENC than predecessor

– Efficiencies >99% across (available) modifications and substrate types
– 99.68% of events registered within 25 ns time window   

● LF-Monopix2 fully functional and efficient after irradiation to 1e15 neq/cm² fluence
– >99% hit detection (and in-time) efficient for all front-end variations
– 2e15 neq/cm² irradiated sensors show promising results

Outlook:
● Studies with neutron irradiated samples
● TID irradiation campaign planned for early 2024
● Development of new DMAPS based on TJ-Monopix2 for Belle II VXD upgrade (VTX collaboration)

– Upcoming talk by M. Babeluk
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Thank you for your 
attention!

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg 
(Germany), a member of the Helmholtz Association (HGF)

This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme 
under GA No. 675587-STREAM, 654168 (AIDA-2020) and 101004761 (AIDA-Innova)
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