From particles to timed tracks
The next generation of hard and software for test beams

Deutsches Elektronensynchroton DESY Hamburg, Notkestraße 85, 22761 Hamburg

13th International “Hiroshima” Symposium on the Development an Application of Semiconductor Tracking Detectors

HELMHOLTZ
The DESY II Test Beam facility
Generating Particles for Detector Studies

- Located on DESY campus Hamburg-Bahrenfeld
- Operates parasitically at PETRA III injector: DESY II
- Provides electron beams to user groups
 - ~ 40 weeks per year
 - @ 3 independent beam lines
- Beam energies between 1 and 6 GeV
- Particle rates up to O(10 kHz / cm²) depending on set energy
- Beam generation via double conversion

https://doi.org/10.1016/j.nima.2018.11.133
Beam Telescopes
Reference systems for tracking

- Large user base
- Fully integrated in EUDAQ and TLU
- 6 layers of 50\textmu m thin sensors
- Two different types available:
 - MIMOSA26 based (1x2\text{cm}2, 18.4\textmu m pitch, 230\textmu s readout)
 - ALPIDE based prototype (1.5x3\text{cm}2, \sim29\textmu m pitch, 10\textmu s readout)
- Currently developing final ALPIDE telescope version

https://arxiv.org/abs/2102.11138
Synchronisation of DUTs with the telescopes
AIDA2020 TLU and EUDAQ2

- AIDA2020 TLU:
 - Hardware interface
 - Provides global trigger
 - Different sync modes possible (handshake, clock)

- EUDAQ2:
 - Software framework
 - Used for telescope run control and data formatting
 - DUT integration not necessary but practical!
From a particle to a track
Triggering and spatial tagging

- Tagging the particles presence with a trigger scintillator
- Reference telescope to reconstruct particles trajectory
- Placing a device under test in the middle (or behind in case of a calorimeter)
- Ideally single particle events at high rates
From particles to tracks
How to solve ambiguities?

Which particle has triggered the readout and how can one ensure, that the DUT is being hit?
Adding timing to tracks and providing a segmented trigger
Resolving multiple particles per trigger

Track time stamping
- Adding time stamps to each track via an additional pixel layer
- Resolves ambiguities of which track has triggered the readout by comparing \(t_x \) to \(t_{\text{trigger}} \)
- Time resolution in the order of a few 10 ps ideal

Region of interest triggering
- A segmented trigger layer to match the DUT area
- Only select the tracks that go through the DUT
- Time resolution needs to be good enough to differentiate particles
Adding timing to tracks and providing a segmented trigger

Resolving multiple particles per trigger

Track time stamping

- Adding time stamps to each track via an additional layer
- Resolves ambiguities of which track has triggered the readout circuit
- Time resolution in the order of a few 10 ps ideal

Region of interest triggering

- A segmented trigger layer to match the DUT area
- Only select the tracks that go through the DUT
- Time resolution needs to be good enough to differentiate particles

Ideally one device for both
Timing layers provided by DESY I
A few 10 ps timing with LGADs

- Providing a few 10ps time resolution
- Collaboration with University of California, Santa Barbara
- First performance results available
- Integration into EUDAQ2 ongoing
- Integrated in AIDA innova

<table>
<thead>
<tr>
<th></th>
<th>h_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>912</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.1858</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.08009</td>
</tr>
<tr>
<td>χ^2 / ndf</td>
<td>22.78 / 18</td>
</tr>
<tr>
<td>Constant</td>
<td>113.9 ± 4.6</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.1839 ± 0.0027</td>
</tr>
<tr>
<td>Sigma</td>
<td>0.07792 ± 0.00174</td>
</tr>
</tbody>
</table>

![Efficiency at track intersection](image)

![Time difference between two layers](image)
Timing layers provided by DESY II

TelePix 2: Nano second timing and region of interest trigger

- Providing a time resolution of a few ns, trigger ~ 2ns
- Match the MIMOSA26 chip size
- Provide region of interest trigger
- Based on a HV-CMOS process and a decade of research
- Design by KIT and readout together with University of Heidelberg, funding QU

Excellent chip performance determined:

- >99% efficiency
- Time resolution < 5ns

Time resolution of trigger output ~2ns RMS

Work in progress

DESY. | From particles to timed tracks | Lennart Huth | HSTD 13

Flipped shadow on telescope

1.2cm

2cm
Corryvreckan

Modular analysis toolkit for test beam data

- Open source community project maintained at DESY
- Providing a modular approach on data reconstruction
- Written in modern C++
- Extensive documentation
- Native support of units in the configuration
- Automated CI with
 - Validation based on test data
 - Compilation on multiple OS
 - Code style, formatting and spelling
- Detailed review of merge requests
- Support of multiple detector geometries
- Contributions from ~50 persons, 93 forks
- TelePix2 analysis as an example
Corryvreckan

Typical Analysis Flow

Telescope → Clustering → Tracking → Alignment

DUTs

Event building

Data loading

Clustering

Tracking

Alignment

Analysis

DUT

Track to hit Assignment

Analysis

One central clipboard to store all data.

Modules can write and read from it
Event Building

Highly flexible creation of events

- Corry needs to be able to merge data from multiple sensor readout concepts:
 - ILC/CLIC like devices (shutter)
 - Data driven readout
 - Triggered readout
 - ...

- Event Building has to be flexible

- The first EventLoader in the configuration is in charge of defining the event

Default settings for DESY test beam:

- Trigger Logic unit defines the event timestamp
 - Adjust event length according to telescope integration time
- Add data from triggered telescope by ID
- Add any data from a data driven detector that has timestamps that macht the event
Event Building II
Highly flexible creation of events

- Corry needs to be able to merge data from multiple sensor readout concepts:
 - ILC/CLIC like devices (shutter)
 - Data driven readout
 - Triggered readout
 - ...

- Event Building has to be flexible
- The first EventLoader in the configuration is in charge of defining the event

- ILC/CLIC like detector with shutter based readout defines the event
- Add matching triggers and data from triggered devices
- Need to veto tracks that are out of the shutter window.

D. Dannheim et al 2021 JINST 16 P03008
Tracking and alignment

Connecting the dots and moving the sensor to their correct positions

- Connecting the hits from the telescope layers to form a track
- Including time cuts if desired
- Available track models:
 - Straight lines
 - Multiplets with unknown scatterer at DUT
 - General Broken Lines
- Alignment based on Chi2 minimisation with TMinuit2 implementation of ROOT

![Graph showing track and residuals](image)
DUT Association
Finding matches between DUT hits and tracks

Optional association in time possible
Final results

Example results from TelePix2 at 85 V bias

- Efficiency as function of threshold
- Time resolution
- In-pixel effects
 - Clustersize
 - Efficiency
 - Timing

4.781 ± 0.003 ns
Exemplary new feature
Radial strip geometries for the ATLAS iTk endcap sensors

- Implemented a new detector type “PolarDetector”
 - Transformations from global to local
 - Definition of radius, angular pitch etc
- Allows for radial strips and radial strips with a stereo angle (ATLAS iTk)
- Used in TB data analysis and validated against Allpix²

https://doi.org/10.1016/j.nima.2018.06.047
User contributions

Every contribution is welcome

- All kinds of user contributions are welcome:
 - New modules
 - New detectors
 - Bugfixes
 - Additions to existing modules
- Please follow the coding guidelines provided
- Code reviews before merge to master
- Contribution guidelines

Example: Alignment with non standard residuals for dSiPMs (see talk by F. Feindt)

MR#597
Summary

- Test beam studies are essential to qualify detector performance
- DESY offers the full package (with support of multiple other institutes)
 - Test beams
 - Tracking telescopes
 - Timing references
 - Software packages for operation, data acquisition and analysis
 - Common hardware for synchronisation

Outlook

- (Track)-timing is gaining more and more impact
 - Fast references are being established
- Test beam complex will likely change within the next years as PETRA IV is on the horizon
- Continuing to improve the software packages, especially Corryvreckan gaining popularity
 - Corryvreckan is open for everybody and relies on user input. Any contribution is welcome

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)
Backup
Reminder: Why do we need timing?

Resolving Ambiguities and enhanced demand on time stamp precision

At DESY II: More than one track per MIMOSA26 frame

- Need to resolve on which one we triggered on
- For slow devices, we need to trigger on the particles that hit the device under test
- Timing layer should be pixelated!
Particle rates

Depend on several factors

- More or less fixed: prim. and sec. target (thickness and material), PIA accumulation, PETRA operation
- Maximum $O(10,000$ particles $s^{-1} \text{ cm}^{-2}$)
- Beamline: T21 & T22 have higher rates than T24 (double dipole chicane)
- Energy: Bremsstrahlung spectrum + “duty cycle” + dipole/collimator
- Primary collimator settings
User statistics (1/2)

User origins and demand over the years

- In the past general upwards trend
- Most busy during CERN shutdowns
- 2019: Record year with over 700 users
- After 2019: You know what happened...
User statistics (2/2)

Types of usage

- Largest category over many years: LHC experiments
 - Upgrade R&D, final characterization, module testing, …
- Generic R&D catching up
- Linear collider R&D keeps decreasing