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Diamond as a radiation detector
● Diamond detectors are operated as ionization 

chambers
- 1 electron-hole pair generated per 13 eV ionizing energy loss
- On average 36 electron-hole pairs per µm per MIP
- Large (5.47 eV) bandgap ensures no thermal carriers

● Poly-crystalline material comes in large wafers 
- Wafers are grown 2-3x the final part thickness 
- Parts are cut out with a laser
- Parts are thinned from the substrate side to the final thickness
- RIE/ICP performed on both surfaces of all parts (critical)
- Collection distance ~300 µm can be achieved on finished parts
- Single-crystal sensors still confined to 4.5 mm x 4.5 mm size

● Devices can be made in any configuration 
- Pad, Strip, Pixel, 3D

15 cm diameter  
pCVD  diamond 
wafer

Working 
principle

3D pCVD diamond 
sensor with pixel 
readout
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3D Diamond 
Pixel Detectors
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Principle of a 3D detector

● After large radiation fluence all detectors become trap limited
 mean drift distance in diamond ~26 µm after 1016 n/cm2

● In 3D detectors: bias and readout electrodes are inside the bulk detector material
● Same thickness D → same amount of generated charge but 3D has shorter drift distance L 

 18 µm between the columns of a 25 µm x 25 µm cell
● In 3D detectors, collected charge is larger when drift distance < limited mean drift distance 

 However, low field regions are introduced

Parker et al., NIM A395 (1997)
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Principle of 3D detector

● Simulation with 90 V bias voltage and periodic boundary conditions
■ 100 µm x 100 µm cell

● Electric field between 0.5 ∼ – 10 V/μm along the diagonal line
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Principle of 3D detector

● Simulation with 90 V bias voltage and periodic boundary conditions
■ 100 µm x 100 µm cell

● Electric field between 0.01 – 10 V/∼ μm along the horizontal line 
■ Low field region (<0.25 V/μm) in between the electrodes and sizable (>25%) 
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3D diamond pixel detectors

Two prototypes were built:
• One with 50 µm x 50 µm cells and one with 100 µm x 150 µm cells
• Bump bonding to CMS chip (PSI46dig2) at Princeton (Indium without reflow) 
• Both readout and bias columns have a small gap ( 15 ∼ μm) to the opposite surface
• Column diameter 2.6 µm (50 µm x 50 µm)
• Laser drilling efficiency  99.7%
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3D diamond pixel detectors
Connection to readout columns with surface metallization 

Bias columns

Readout columns

Six 3D cells

Bump bonds

50 µm x 50 µm cells
Readout side
6 cells ganged to match the readout pitch

100 µm x 150 µm cells
Readout Side 

Readout
columns
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3D diamond pixel detectors
Connection to bias columns with surface metallization 

Bias grid

50 µm x 50 µm cells
Bias side

100 µm x 150 µm cells
Bias Side 

Bias grid

HSTD13 – 07 December 2023 11



H. Kagan - Recent Results from Diamond Detectors 

Hit Occupancy

bump
bonding 
issues

dead
pixel

50 µm x 50 µm 100 µm x 150 µm
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PSI Testbeam
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Efficiency
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PSI Testbeam
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● Readout with PSI46dig v2.1-respin CMS chip
■ threshold ~2000 electrons

● Testing at PSI (using 260 MeV π+ beam)
■ telescope resolution ~60 µm (multiple scattering)

● Fiducial selection avoids known problems 

 50 µm x 50 µm
100 µm x 150 µm

50 µm x 50 µm 100 µm x 150 µm

 50 µm x 50 µm
100 µm x 150 µm
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Pulse Height vs Hit Position
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CERN Testbeam
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50 µm x 50 µm 100 µm x 150 µm
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In-cell Cluster Size
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CERN Testbeam
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Bias
Readout

50 µm x 50 µm 100 µm x 150 µm
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In-cell Efficiency
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CERN Testbeam
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50 µm x 50 µm 100 µm x 150 µm

Bias
Readout

50 µm x 50 µm 100 µm x 150 µm
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In-cell Pulse Height
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CERN Testbeam
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Bias
Readout

50 µm x 50 µm 100 µm x 150 µm
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Pulse Height Distributions
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CERN Testbeam
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● 3D pCVD diamond collects 
  >85% of charge

● efficiency in fiducial region: 
>99.2%

● In the 3D configuration, 
pCVD diamond looks single 
crystal like!

3D diamond pixel Si pixel calibration

RD42 Preliminary

pCVD 
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New Steps in Diamond Processing
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RIE/ICP Processing
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Reactive Ion Etching/Inductively Coupled Plasma (RIE/ICP) Processing  
is a plasma processing step which can be used to “repair” surface 
issues.  

This is particularly necessary in diamond processing since most 
manufacturers use mechanical processing (grinding) to finish “final” 
detectors.  

These mechanical steps can create sub-surface damage as deep as 12 
µm beneath the surface. Such damage can become evident as visible 
surface defects, lower signals, larger leakage currents, HV breakdown, 
polarization and lower yield. 

These effects can be mitigated with RIE/ICP processing.
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RIE/ICP Processing
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● Visible surface defects

Before RIE/ICP
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RIE/ICP Processing
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● Expected leakage currents (pA) ● Large leakage currents (µA)



H. Kagan - Recent Results from Diamond Detectors 

RIE/ICP Processing

Before RIE/ICP
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● Low signal size
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RIE/ICP Processing

Before RIE/ICP
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After RIE/ICP

● HV Issues
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RIE/ICP Processing

Before RIE/ICP
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After RIE/IC

● Polarization Issues



H. Kagan - Recent Results from Diamond Detectors 

Rate Dependence of pCVD 
Diamonds
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Rate dependence of pCVD diamonds

up to 20 MHz/cm2

up to 2x1015 n/cm2

No rate dependence observed in irradiated pCVD:

PSI Testbeam
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ETH Thesis 28688 (2022):
M. Reichmann 

Guard RingPad

Amplifier

Diamond
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Conclusions
  

• Two pCVD 3D pixel detectors with 50-µm x 50-µm and with 100-µm x 150-µm 
cells fabricated and compared

• M. Reichmann, Ph.D. Thesis 28688 ETH Zurich  (2022)
• Laser drilling of ~2.6 μm diameter columns with >99.7% efficiency achieved

• Hit detection efficiency >99% achieved with pixel electronics
• 50 µm x 50 µm cells in pCVD diamond look very good; 100 µm x 150 µm cells are too large

• 25 µm x 25 µm cells in pCVD diamond should give outstanding radiation tolerance 
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● No rate dependence for irradiated pCVD diamonds for 10 kHz -20 MHz/cm2, 
up to to 2x1015 n/cm2

● M. Reichmann, Ph.D. Thesis 28688 ETH Zurich  (2022) 
 

● RIE/ICP can mitigate many production issues
● In progress for ATLAS BCM’
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Conclusions and Future Plans

• Updated radiation hardness results of diamond to protons and fast neutrons 
up to fluences of 2x1016 protons/cm2 plus a universal damage curve 

• Journal of Physics D: Applied Physics, Volume 52, Number 46  (2019) [DOI: 10.1088/1361-6463/ab37c6]
• Sensors, Volume 20, p. 6648 (2020) [DOI: 10.3390/s20226648]
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• Irradiate and assess performance of 3D diamond detectors after fluences of 1016 and 
1017 n/cm2 

• Fabricate 25 μm x 25 μm 3D cells

• Scale up 3D column production using lasers

• Develop column etch process compatible with semiconductor industry

Future Plans
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BACKUP
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Summary of RD42 Results on 
Radiation Tolerance
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Radiation tolerance of diamonds
• Irradiate diamond samples with various particle 

species and energies 
- Re-metalize after each irradiation step to fabricate a strip detector 
- Readout with low (~80 electrons) noise VA2 chip

• Characterize irradiated devices in beam tests
- Using hit prediction from telescope, collect charge in region of interest of up 

to 10 strips

- Tracking precision at detector under test:  2–3 ∼ μm

Diamond strip detector wire-
bonded to a VA2 readout chip

Schematic of the test assembly in CERN SPS H6A beamline

32
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Radiation tolerance of diamonds
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• Measure pulse height as a function of irradiation
- Measure under both positive and negative bias 

- Convert mean pulse height to mean drift length before 
immobilization by trapping/annihilation - “Schubweg” 
(≈µEτ)

• Fit data with an empirical damage equation
- n- number of traps, λ – Schubweg, k – damage constant,                   

φ - fluence

- The data for each sample are fit individually

- Poly has a shorter initial Schubweg due to a higher initial trap 
concentration (offset in 1/λ at φ=0)

- Slope for pCVD and scCVD are the same 

qsignal (e)

RD42
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Summary of RD42 radiation tolerance results

Particle Energy Relative k

proton 24 GeV 1

800 MeV 1.67+/-0.09

70 MeV 2.60+/-0.29

25 MeV 4.4+/-1.2

pion 200 MeV 3.2+/-0.8

fast neutrons 4.3+/-0.4

Sensors 20 6648 (2020)
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RD42
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