Identification and Recovery of ATLAS18 Strip Sensors with High Surface Static Charge

<u>E. Staats</u>^{a,*}, A. Affolder^b, G. A. Beck^c, A. J. Bevan^c, Z. Chen^c, I. Dawson^c, A. Deshmukh^b, Dowling^b, D. Duvnjak^a, V. Fadeyev^b, P. Federicova^d, J. Fernandez-Tejero^e, A. Fournier^e, N. Gonzalez^b, C. Jessiman^a, S. Kachiguin^b, J. Keller^a, C. T. Klein^a, T. Koffas^a, J. Kroll^d, J. Kvasnicka^d, V. Latonova^d, F. Martinez-Mckinney^b, M. Mikestikova^d, P. S. Miyagawa^c, S. O'Toole^e, Q. Paddock^b, L. Poley^f, E. A. Slavikova^d, B. Stelzer^e, P. Tuma^d, M. Ullan^g, Y. Unno^h, C. Westbrook^b, S. C. Zenz^c

2023-12-06

*Corresponding Author (e.staats@cern.ch)

^aPhysics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada, ^bSanta Cruz Institute for Particle Physics (SCIPP), University of California, Santa Cruz, CA 95064, USA, ^cParticle Physics Research Centre, Quuen Mary University of London, G.O. Jones Building, Mile End Road, London E1 4NS, United Kingdom,

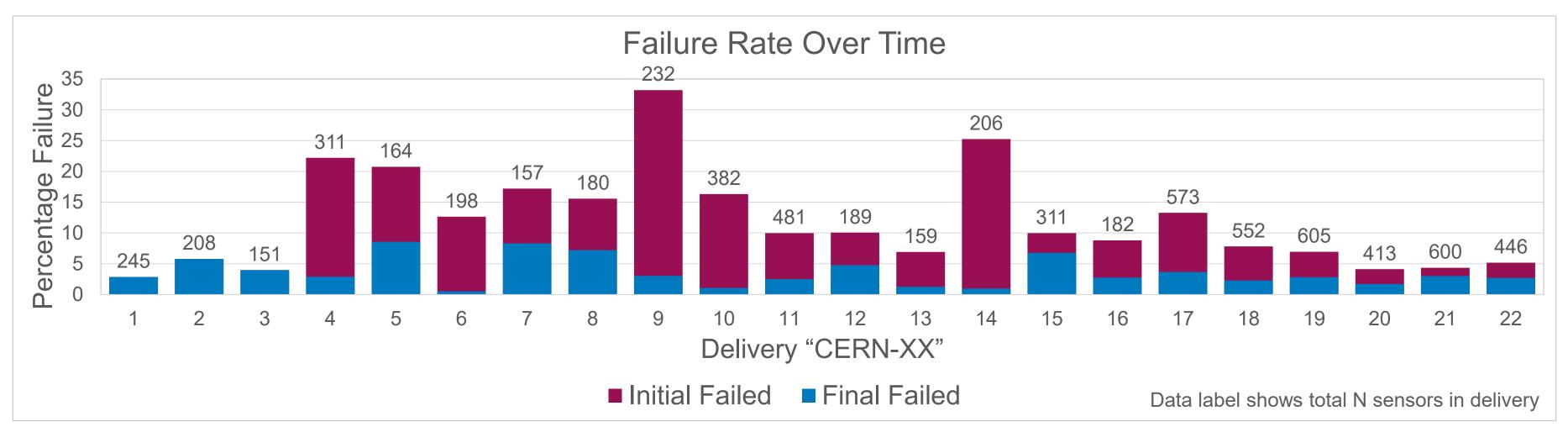
^dInstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague 8, Czech Republic, ^eDepartment of Physics, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6, Canada, ^fTRIUMF, 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3, Canada

⁹nstituto de Microelectronica de Barcelona (IMB-CNM), CSIC, Campus UAB-Bellaterra, 08193 Barcelona, Spain, ^hInstitute of Particle and Nuclear Study, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Outline

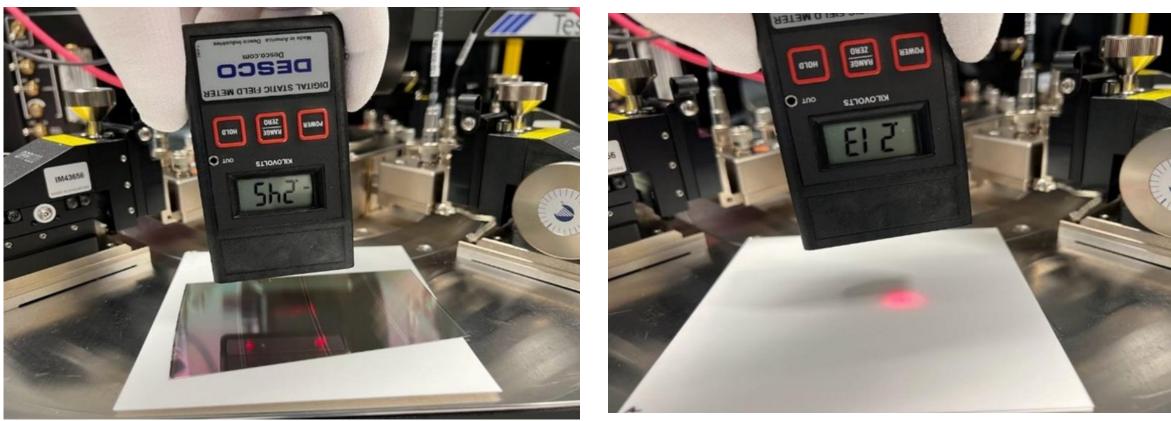
- Overview of QC test suite
- The general trend of recoveries throughout production
- Summary of the static charge issue
- Association of static charge with specific test failures; IV and Strip test
- Recovery methods and examples of recovery
- A change by the vendor: new packaging material
- Additional related information can be found in three posters:
 - Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors *during on-going production* – Paul S. Miyagawa
 - Understanding the Humidity Sensitivity of Sensors with TCAD Simulations Ilona Ninca
 - Long-term humidity exposure of ATLAS18 ITk strip sensors Vitaliy Fadeyev

Quality Control (QC) Test Suite


- Mechanical Tests (performed on every sensor): \bullet
 - Visual inspection (VI) Sensor is inspected under microscope for scratches, chips, and other forms of visual damage
 - Metrology Total sensor bow and thickness is measured across the sensor surface • Visual Capture – Total sensor surface is imaged using hi-res camera, images archived
 - in high volume storage area
- Electrical Tests (performed on every sensor): \bullet
 - IV Current-voltage response measured from 0 to -700V bias in 10V steps, 10s delay; short stability measurement "hold steps" at the end ~30s
 - CV Capacitance-voltage response measured from 0 to -500V in 10V steps, 5s delay
- Electrical Tests (performed on a fraction of sensors):
 - Long Term Stability (LTS) Sensor is biased to -450V, current is read out every 2 min lacksquarefor a period of 40 hours (~20% batch sample)
 - Strip Test (ST) Sensor is biased to -150 -250V. Each individual strip is probed; 10V and then 100V is sourced to the strip while the strip leakage current is measured; Series measurement of the bias resistance and coupling capacitance is performed via LCR meter (>10% batch sample)

Failures & Recoveries

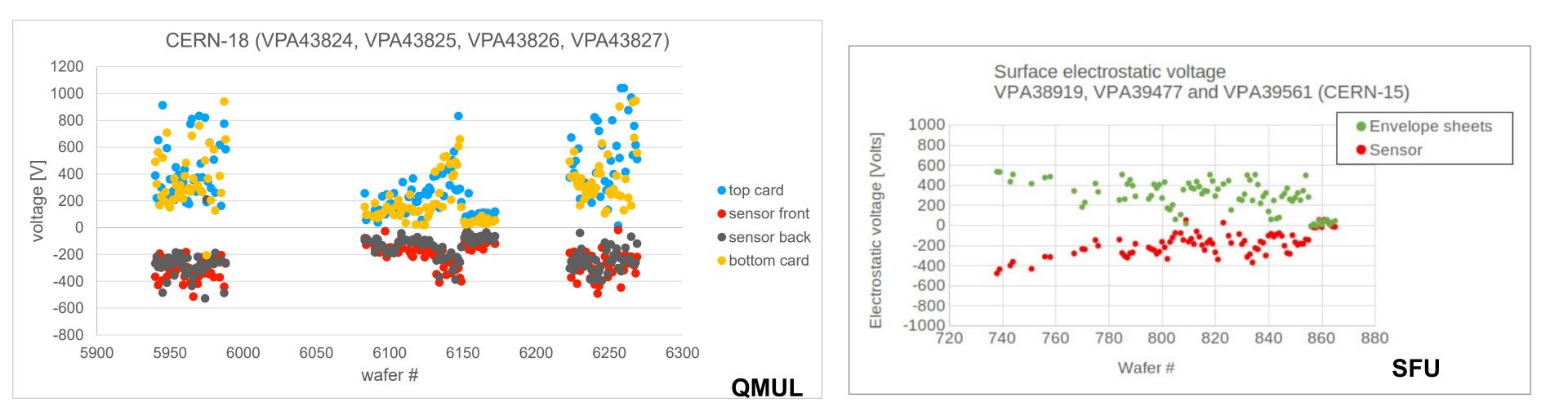
- At the start of production, failures were low (modulo a rejected batch from second delivery due to bad p-stop doping)
- Need for recovery became apparent around CERN-04 delivery
 - Initially a significant fraction, gradually reduced over time; especially last few deliveries
- Final fraction of failures has been quite consistently low, thanks to recovery efforts
- Decreasing fraction of sensors requiring recovery is still essential:
 - less sensor handling at QC sites,
 - less effort/manpower required for recoveries,
 - higher testing throughput without recoveries


Ezekiel Staats -- ITk Strip Sensor Collaboration

04 delivery especially last few deliverie

Static Charge Build-up

- Almost all QC sites observed a static charge on sensors/sheets
 - Measurement performed with electrostatic field meter upon reception (before) any QC)
- Static charge can cause ESD issues (eg. poor strip isolation in strip test and/or lower BD voltage)
- In extreme cases, the static charge built up between the sensors/sheets is enough to "stick" the surfaces together (not seen in pre-production)



Static Charge Build-up

- Usually, the packaging sheets are measured to have positive charge, sensor surface has negative charge
- Packaging sheets were noted to have two distinct finishes on either side: "shiny" or "matte"
- Orienting the two cards so the same side faces the sensor (shiny-shiny or matte-matte) reduced the stickiness and partially resolved high static charge

IV Failures

- Sensor with breakdown below 500V is considered a failure
- There is some level of correlation between IV failure and high static charge

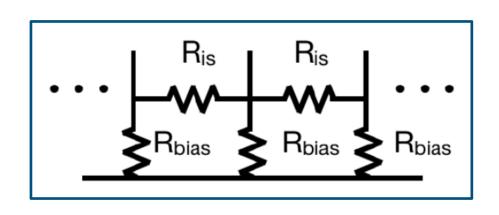
CEF	RN-09 Examp	ble	CE	ERN-10 Examp	le
Serial Number:	Sheet	Sensor	Serial number:	Sheet	Sensor
VPA38913-W00669	142	-386	VPA38905-W00411	175	-148
VPA38913-W00671	222	-214	VPA38905-W00412	256	-167
VPA38913-W00672	287	-372	VPA38905-W00413	139	-148
VPA38913-W00673	296	-274	VPA38905-W00414	181	-80
			VPA38905-W00415	228	-133
VPA38913-W00674	96	-376	VPA38905-W00416	121	-136
VPA38913-W00675	221	-440	VPA38905-W00417	325	-147
VPA38913-W00676	224	-562	VPA38905-W00419	193	-153
VPA38913-W00677	256	-342	VPA38905-W00420	169	-30
VPA38913-W00678	373	-421	VPA38905-W00421	185	-44
VPA38913-W00679	220	-342	VPA38905-W00422	258	-68
VPA38913-W00680	124	-306	VPA38905-W00423	211	-111
VPA38913-W00684	144	-347	VPA38905-W00424	262	-137
VPA38913-W00685	261	-463	VPA38905-W00428	171	-17
VPA38913-W00686	250	-314	VPA38905-W00430	165	-139
VPA38913-W00687	446	-480	VPA38905-W00431	193	-215
VPA38913-W00689	473	-470	VPA38905-W00432	316	-119
VPA38913-W00690	247	-360	VPA38905-W00434	181	-126
VPA38913-W00691	241	-376	VPA38905-W00436	324	-110
VPA38913-W00694	213	-394	VPA38905-W00437	267	-113
VPA38913-W00695	318	-513	VPA38905-W00439	141	-210
VPA38913-W00696	373	-396	VPA38905-W00440	320	-69
VPA38913-W00697	251	-379	VPA38905-W00442	268	-151
VPA38913-W00698	231	-424	VPA38905-W00445	166	-154
VPA38913-W00699	491	-532	VPA38905-W00446	268	-126
VPA38913-W00700	264	-392	VPA38905-W00447	339	-235
VPA38913-W00702	482	-413	VPA38905-W00448	156	-87
VPA38913-W00703	283	-378	VIA50505-W00440	100	07

Green – IV passed Red – IV Failed Yellow – soft BD

ed a failure ilure and high static charge

CERN-09 – The sheets are not in the correct orientation (shiny-matte)

CERN-10 – The sheets are in the "correct" orientation (shiny sides inward)


High static charge does not guarantee IV failure, but higher fraction of failures is observed when the overall static charge (measured on the sensor surface) is higher

Strip Test Failures

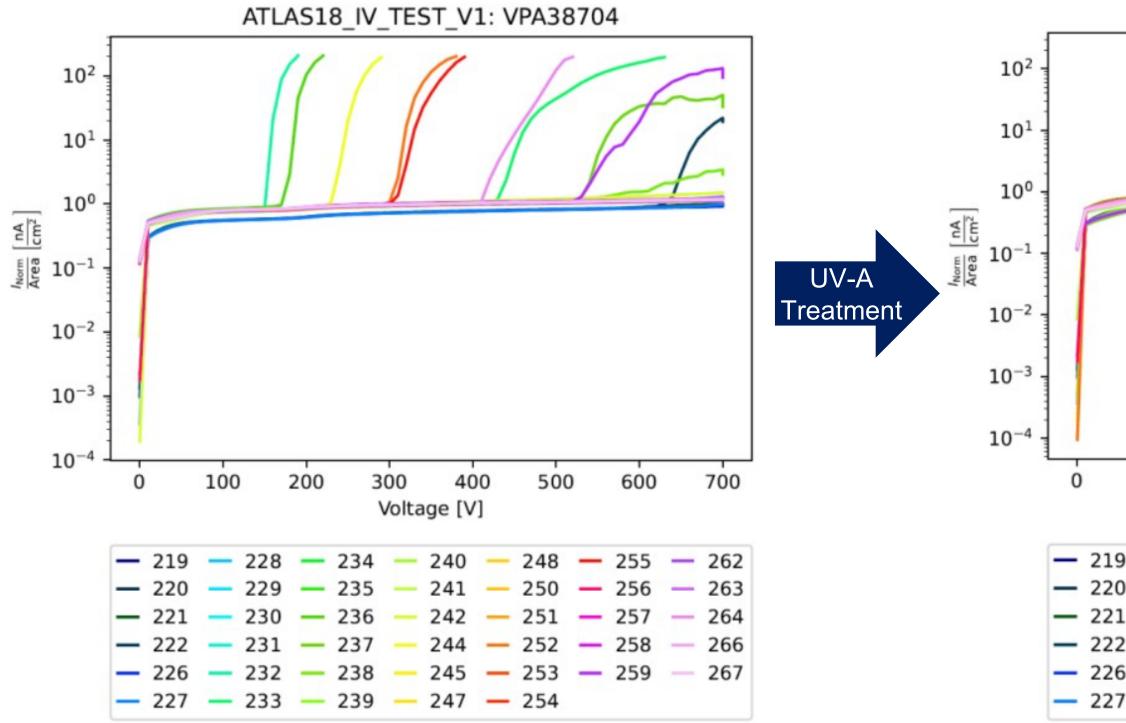
- Dominant failure mode for strip tests is loss of interstrip lacksquareisolation
 - Loss of isolation is inferred when measured bias resistance of n consecutive strips is reduced by a factor of n ie. loss of isolation = resistors in parallel $R_{bias}^{meas} \approx \frac{1}{n} R_{bias}^{nom}$
- Often, ST failures have high static charge, but high static charge does not *guarantee* a ST failure
 - Possible mechanism: charges at surface will invert the Si at the interface such that there is a conducting channel between neighbouring strips

Initial Str	Initial Strip test pass Initial Static voltage		Initial Strip test fail		Initial Static voltage		
W363-VPA38904	22.7. 2022	+6	W381-VPA38904	3.6.2022	-883		
W364-VPA38904	22.7.2022	+11	W395-VPA38904	6.6.2022	-683		
W365-VPA38904	22.7.2022	+8	W586-VPA38909	7.6.2022	-694		RN-08: all ST failure
W380-VPA38904	8 strips low R _{bias} 2.6.	-528	W599-VPA38909	9.6.2022	-601	hac	static charge >600
W385-VPA38904	25.7. 2022	-615					
W594-VPA38909	8.6.2022	-543					
W624-VPA38909	13.6.2022	-649					
W625-VPA38912	13.6.2022	-235					
W639-VPA38912	23.6.2022	-79					
W657-VPA38912	9.6.2022	-338				1	CERN-09: Many s
W666-VPA38912	13.6.2022	-322				1	with high static cha
W635-VPA38916	20.6.2022	-193					not fail ST
W636-VPA38916	20.6.2022	-124					
W638-VPA38916	20.6.2022	-128					
W639-VPA38916	21.6.2022	-167					
W643-VPA38916	20.05.2022	-104					
W644-VPA38916	23.05.2022	-120					
W646-VPA38916	24.05.2022	-113					

	Serial Number: (R4)	Static Charge (V):	Initial Striptest	Low inter- strip isolation	Striptest after 8h curing
	VPA38913-		_		
	W672	-372	Pass		
	VPA38913- W675	-440	Pass		
	VPA38913- W684	-347		Large section	Pass
	VPA38913- W686	-314	Pass		
	VPA38913- W689	-470	Pass		
	VPA38913- W695	-513	Pass		
	VPA38913- W699	-523	Pass		
	(R5)				
Sors	VPA38917-				
e do	W647	-86	Pass		
= u0	VPA38917- W652	-157	Pass		
	VPA38917- W661	-221	Fail		Pass
	VPA38917- W667	-142	Pass	1 pair bad strips	
	VPA38917- W672	-160	Pass	3 pair bad strips	
	VPA38917- W678	-135	Pass		

Recovering Failed Sensors

- Long term exposure to UV-A light (370-410nm) has proven to be effective at restoring some sensors' IV and ST performance
- Exposure time varies, but is typically 4-8 hours
- UV-C (~250nm) was also explored (see backup) but has an undesirable side effect of greatly increased (3-50x) leakage current
 - Optionally used in extreme/difficult-to-recover cases
- Exposing the sensor surface to a constant stream of ionized air is also effective for recovering sensor IV and ST performance
- Exposure time is much less than for UV-A treatment; about 10 min is sufficient Some sites now pre-emptively treat all incoming sensors with ion blower

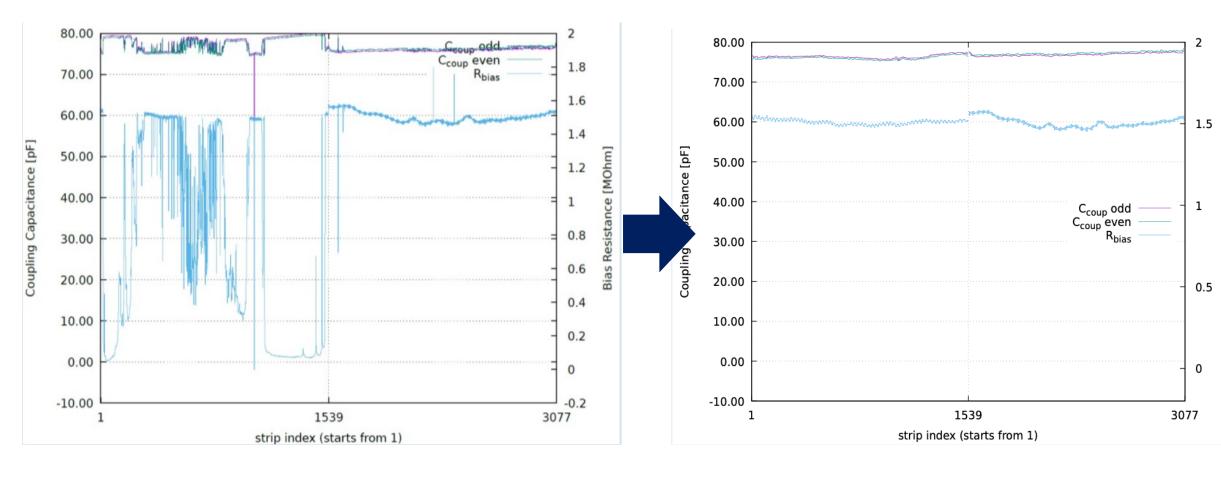


SFU UV-A setup

IV Failures and Recoveries

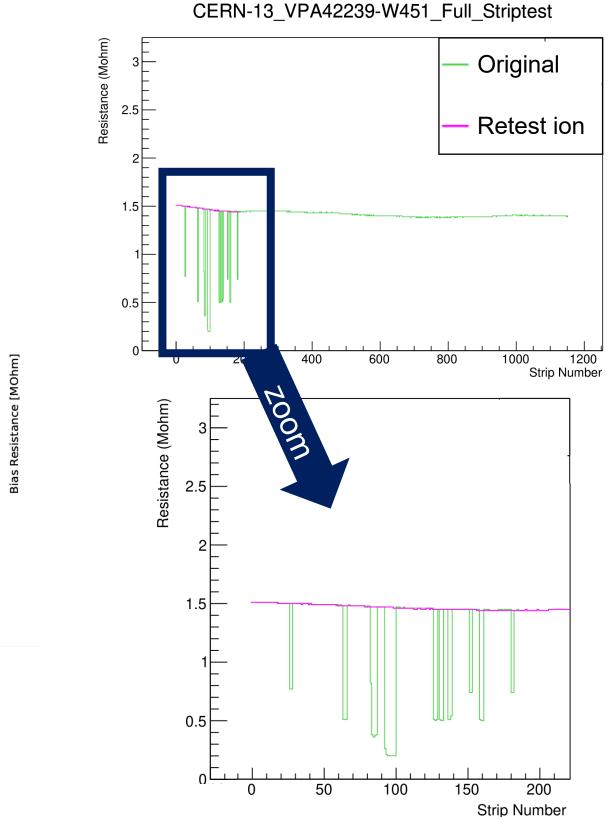
In below example, all but one sensor is recovered by UV-A exposure

- In addition to ionized air and UV-A treatments, some failed IV can be recovered by prolonged exposure to high voltage (eg. additional LTS testing)
 - In many cases, sensors with "soft-breakdown" are selected for and show improvement after LTS test



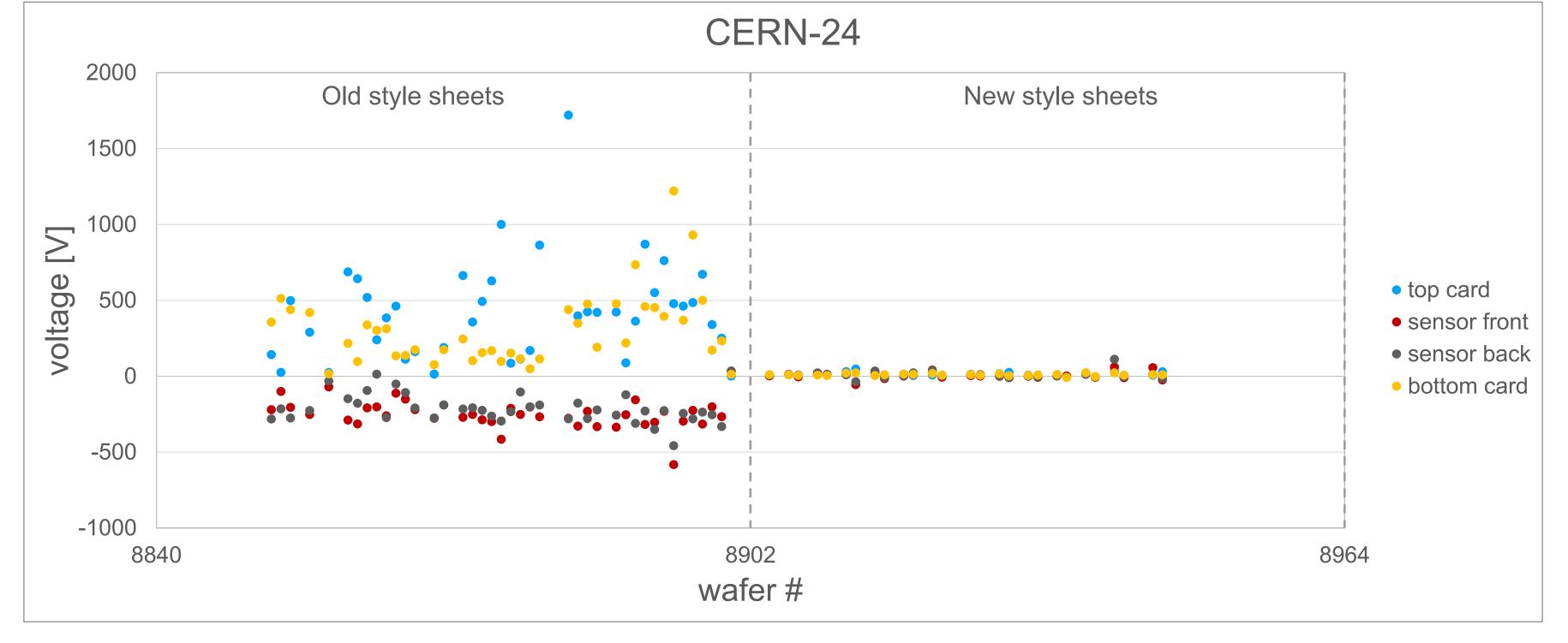
ATLAS18_IV_TEST_V1: VPA38704

							/			/	
	100	200	3	00	40	bo	500)	600	8	700
	Voltage [V]										
9	- 22	28 -	234	-	240	-	248	-	255	-	262
0	- 22	29 —	235	-	241	-	250	-	256	-	263
1	- 23	30 —	236	-	242	-	251	-	257	-	264
2	- 23	31 —	237	-	244	_	252	_	258	-	266
6	- 23	32 —	238	-	245	-	253	-	259		267
7	- 23	33 —	239	-	247	-	254				


Strip Test Recoveries

 Varying levels of success at each site – At CU and QMUL great success using ionized air; At SFU and FZU, more success with UV-A

Example: Recovery using UV-A at FZU



Example: Recovery using Ion blower at CU

New Packaging Sheets

- Vendor has updated their packaging materials; now using a different kind of sheet, and with matte-matte orientation
- Has significant effect on the measured static charge lacksquare
 - Below plot, two back-to-back batches from the same delivery but with different kind of sheets

Conclusions

- An issue of static charge leading to poor strip isolation and degraded IV have been observed in a minority fraction of sensors during production
- Various recovery methods have been explored for these sensors
 - For poor IV performance: UV-A treatment, ion blower, and/or additional LTS
 - For poor ST performance: UV-A and/or ion blower treatments
- The number of sensors requiring recovery has decreased over time; Due to:
 - Updated packaging by vendor
 - Handling procedures and pre-emptive treatments at QC sites

Acknowledgements

This work was supported by:

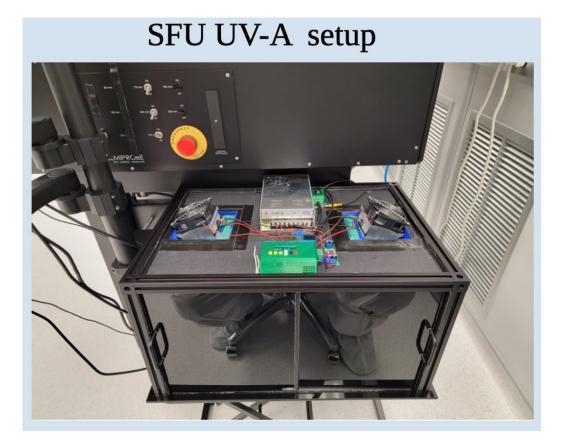
The Spanish R&D grant PID2021-126327OB-C22, funded by MCIN/ AEI/10.13039/501100011033 / FEDER, UE.

The US Department of Energy, grant DE-SC0010107.

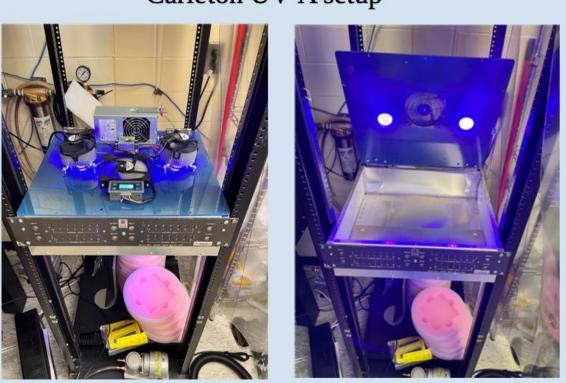
The Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada.

The Ministry of Education, Youth and Sports of the Czech Republic coming from the projects LTT17018 Inter-Excellence and LM2018104 CERN-CZ.

STFC grants ST/W000474/1, ST/S00095X/1, ST/X001431/1, ST/R00241X/1.



Backup

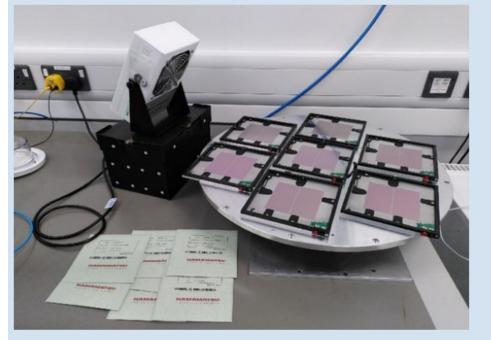


Recovery Methods — UV-A

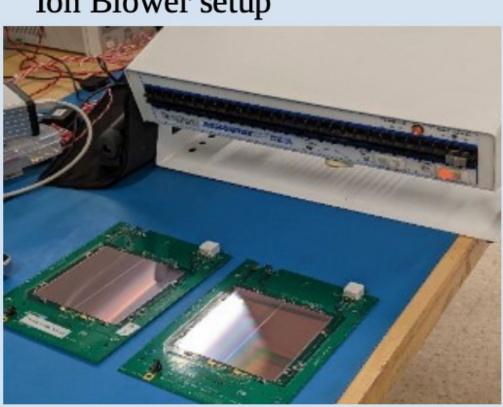
• A few examples at various QC sites

Carleton UV-A setup

FZU UV-A setup

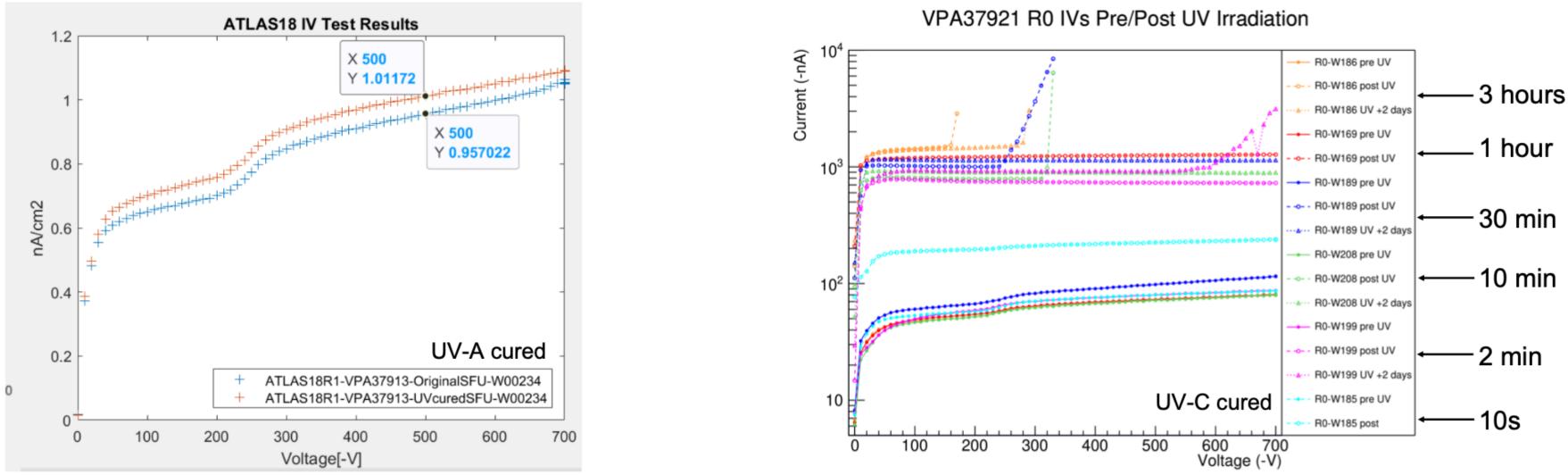

Recovery Methods — Ionized Air ATLAS / ITK

A few examples of various sites


Carleton - SCS Ion gun. Similar (EMIT) used in FZU.

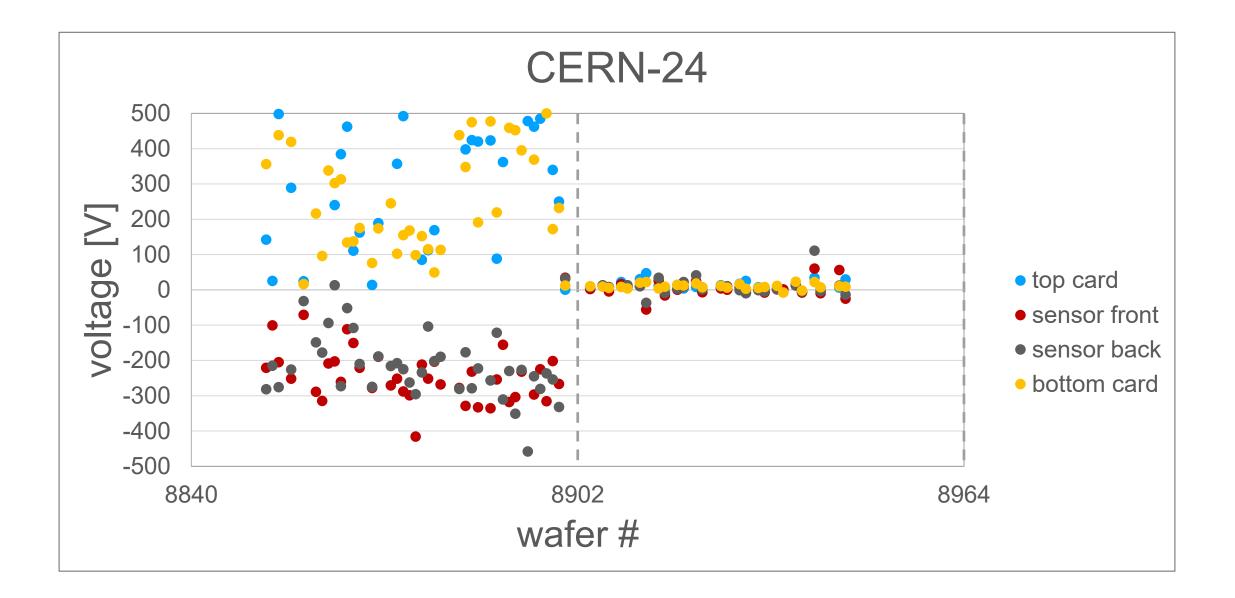
An example of the Ion Blower setup used in Cambridge (Charlers Watter – now Desco). Similar used also in QMUL (Keyence SJ-F031).

SCIPP - Simco Aerostat XC Ion Blower setup



FZU - SCS Ion Blower

Recovery Methods — UV-C


- Example of sensor(s) whose ST performance was recovered by UV-A (left) and UV-C (right)
- Even after a small, 10s, UV-C exposure the leakage current increases ~3x
- UV-C can induce early BD, which sometimes goes away after time in dry storage

New Sheets

- Scale of the plot includes all data points (>1500V) \bullet
- Rescaling to better show the charge of the second, low static charge, \bullet batch with new sheets
 - Almost all measured static charge is below 100V

