13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors

Design and construction of the CMS Inner Tracker for the HL-LHC Upgrade

Alkiviadis Papadopoulos on behalf of the CMS Tracker Group

December 2023, Vancouver, Canada

CMS Tracker

- Innermost sub-detector of CMS >
- Used for reconstruction of charged >particle trajectories (tracks)
- \succ Si sensors
- Inside a strong magnetic field \succ
 - Particle momentum and charge 0 determines trajectory
- Two parts: >
 - Outer tracker (strips) 0
 - Inner tracker (pixels) 0
- >Inner tracker was upgraded in 2017 (Phase-1 upgrade)
 - Layers were added to maintain good 0 tracking performance at higher luminosity $(2x10^{34} \text{ cm}^{-2}\text{s}^{-1})$
- Both inner and outer tracker are >being redesigned for HL-LHC (Phase-2 upgrade)

Current detector (Phase-1 upgrade)

Phase-2 Inner Tracker for HL-LHC

Peak luminosity [10³⁴cm⁻²s⁻¹

7

6

5

3

2

Run 4

2026 2028 2030 2032 2034 2036 2038 2040

Year

HL-LHC

Inst. luminosity (nominal) $5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Inst. luminosity (ultimate) 7.5 x 10^{34} cm⁻²s⁻¹

Integrated luminosity ≥ 3000 fb⁻¹

Collisions per bunch crossing 140 - 200

Requirements:

- Radiation tolerance
 - Dose up to ~1 GRad
 - Fluence* up to ~2 x $10^{16} n_{ea}$ cm⁻²
 - Replacement of inner modules foreseen
- Increased granularity
 - Better track separation at high pile-up
- Reduced material
- > Extended tracking **acceptance** ($|\eta| \le 4$)
- > High **bandwidth** (hit rate up to 3.5 GHz/cm²)

	RUN 4 (800 fb ⁻¹)		RUN 5 (1300 fb ⁻¹)		RUN 4+5 (2100 fb ⁻¹)		RUN 4+5+6 (3000 fb ⁻¹)	
	Fluence	Dose	Fluence	Dose	Fluence	Dose	Fluence	Dose
TBPX L1	0.69	0.36	1.12	0.58	1.81	0.93	2.58	1.34
TBPX L2	0.18	0.11	0.29	0.17	0.48	0.28	0.68	0.40
TFPX R1	0.46	0.31	0.75	0.49	1.22	0.79	1.74	1.13
TFPX R2	0.21	0.14	0.35	0.23	0.57	0.37	0.82	0.53

Maximum fluence* $(10^{16}n_{eq}cm^{-2})$ and dose (GRad) by layer/ring

Mechanical structure

Relatively easy installation and removal

TFPX

- Low density (carbon fiber) support
- \succ CO₂ cooling pipes

Barrel (TBPX)

Close-up view of the barrel showing modules, e-links, cooling loops, flex, high voltage, serial power

TEPX

5

Sensors

- ➢ Rectangular pixels (25 x 100 µm) everywhere
 - \circ 100 μ m in beam direction to match longer clusters in barrel mid-rapidity
 - Square pixels offer small to no improvement
- Planar (n-in-p, 150µm bulk thickness)
 - High hit efficiency (>99%)
- ≻ 3D
 - Slightly less efficient (up to 98%)
 - High margin for thermal stability
 - Lower bias voltage
- Barrel layer 1 requires 3D sensors for thermal stability after irradiation
- > Planar sensors are used everywhere else for higher efficiency

Hit efficiency after irradiation $(1x10^{16} n_{e\alpha}cm^{-2})$

Rectangular sensor pixels are bump bonded to square ROC pixels according to this pattern

Read-Out Chip (ROC)

- Designed by the RD53 collaboration between ATLAS & CMS
- \succ Main goals:
 - **Hybrid** design (independent sensor R&D)
 - Increased granularity (smaller pixels)
 - High hit rate
 - Radiation tolerance
- > **RD53A** was the first **demonstrator** chip:
 - Submitted in 2017
 - Half-size
 - 3 different AFE designs on the same chip
- > RD53B-CMS (aka. CROCv1) was the pre-production prototype:
 - Submitted in 2021
 - Full size
 - CMS-specific (ATLAS flavor also available)
 - Linear AFE
- > RD53C-CMS (aka. **CROCv2**) is the **final** CMS version:
 - Submitted in Oct. 2023
 - Many improvements and bug fixes but functionally similar to CROCv1

RD53A

CROCv1

CROCv1

- Mixed-signal IC (digital & analog)
- Linear Analog Front-End (AFE):
 - Low threshold (< 1000 e-)
 - Time Over Threshold (ToT) linear w.r.t charge
- High bandwidth
 - Multi-lane output
 - Event data compression
 - Can receive and forward data to/from each other (data-merging)
- Radiation tolerance
 - Good performance up to ~1 GRad
 - Triplicated registers
 - SEU detection

Overview of AFE operation

Configuration memory: ~1446 bits global + 8 bits per pixel

- Highly configurable
 - Pixel masking
 - \circ \qquad Global threshold and ToT gain
 - Per-pixel threshold adjustment
 - Input/output merging & routing

Calibration & monitoring

- Charge injection circuit
- Radiation and temperature sensors
- Internal voltage/current monitoring

Testing

>

- Bit error rate (PRBS)
- Error counters
- \circ Design for test logic with scan chain

Specifications Pixel size 50 x 50 µm² Process 65 nm (TSMC) Hit rate 3.5 GHz/cm² Trigger rate 750 kHz Readout latency 12.5 µs (500 BX)

Output bandwidth 1-4 x 1.28 Gbps

Power consumption $| < 1W / cm^2$

CROCv1 Results

- Extensively tested and characterized
- > AFE measurements
 - Threshold & noise
 - ToT Gain
 - Hit detection delay (time-walk)
 - Threshold dispersion
 - Noise occupancy (spontaneous hits)
- Several irradiation campaigns
 - Different sources (X-rays, various beams)

Per pixel

Global

- With and without sensor
- Reaching up to ~1 GRad
- Non-uniform with different gradients
- ➤ Test-beams
- ➤ Wafer-level testing
 - Custom probing setup
 - Comprehensive and fast testing procedure

Modules

Optical readout

Front-End:

- > Optical links are used to minimize materials
- The portcard acts as a bridge between electrical and optical links
- Each portcard has 3 LpGBT ASICs
- Each LpGBT is connected to:
 - up to 7 electrical outputs @ 160 Mbps (downlinks)
 - up to 7 electrical inputs @ 1.28 Gbps (uplinks)
 - 1 optical TRx @ 10 Gbps (VTRx+)

- > DTC (Data, Control and Trigger)
 - ACTA board (Apollo)
 - 2 x FPGAs + CPU
 - 72 optical links to the Front-Ends (FE)
 - 16 x 25 Gb/s links to DAQ (event data)
 - 8x25Gb/s links for luminosity monitoring

DTC (Apollo)

System data flow

- > Portcards in TFPX and TEPX
- > Adaptable bandwidth
 - From 0.25 to 4 uplinks per CROC (0.32 to 5.12 Gbps)
 - 1 downlink per module (160 Mbps)

Output links per module

	Layer 1	6
TBPX	Layer 2	2
IDFA	Layer 3	2
	Layer 4	1
	Ring 1	3
TFPX	Ring 2	3
IFFA	Ring 3	2
	Ring 4	2
	Ring 1	4
	Ring 2	3
TEPX	Ring 3	2
	Ring 4	2
	Ring 5	1

Power system

- Serial powering
 - Up to 12 modules in series
 - Low power loss in the transmission lines
 - Minimal cable mass
 - No rad-hard DC-DC converter required
- On-chip Shunt-LDO (SLDO)
 - Voltage regulator (1.2 V)
 - Shunt dissipates excess power
- On-chip protection mechanisms prevent failure scenarios (eg. overvoltage protection)

Max -2.00-

1.75

1.50

Voltage [V]

0.75

0.25

0.0

> 260 x 2 Power Supply Units (PSU) in total

Cable cross-section

Performance

- > Offline simulation with CMSSW
- Significant improvements in efficiency and resolution
- High efficiency and low fake rate for PU up to 200

Efficiency vs. track distance from nearest track

Fake rate

Conclusions

- > The Inner Tracker has been redesigned for HL-LHC
 - New sensors and readout electronics
 - High granularity (more layers, more and smaller pixels)
 - Reduced material
 - Increased acceptance (from 3 to 4)
- Simulation shows promising results
- Extensively tested in the lab and in test-beams
 - At various levels of integration (from individual components to complete demo setups)
- > The final readout chip was submitted in October
 - ATLAS flavor already successfully tested
 - Design and testing phases are mostly over
- Phase-2 upgrade installation during LS3
 - o Jan. 2026 April 2029

Thank you!

TBPX ladder demo setup

