Design and construction of the CMS Inner Tracker for the HL-LHC Upgrade

Alkiviadis Papadopoulos
on behalf of the CMS Tracker Group

13th International "Hiroshima" Symposium
on the Development and Application of Semiconductor Tracking Detectors

December 2023, Vancouver, Canada
CMS Tracker

- Innermost sub-detector of CMS
- Used for reconstruction of charged particle trajectories (tracks)
- Si sensors
- Inside a strong magnetic field
 - Particle momentum and charge determines trajectory
- Two parts:
 - Outer tracker (strips)
 - Inner tracker (pixels)
- Inner tracker was upgraded in 2017 (Phase-1 upgrade)
 - Layers were added to maintain good tracking performance at higher luminosity (2×10^{34} cm$^{-2}$s$^{-1}$)
- Both inner and outer tracker are being redesigned for HL-LHC (Phase-2 upgrade)
Phase-2 Inner Tracker for HL-LHC

HL-LHC

Inst. luminosity (nominal) \(5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}\)
Inst. luminosity (ultimate) \(7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}\)

Integrated luminosity \(\geq 3000 \text{ fb}^{-1}\)

Collisions per bunch crossing \(140 - 200\)

Requirements:

➢ **Radiation** tolerance
 ○ Dose up to \(\sim 1 \text{ GRad}\)
 ○ Fluence* up to \(2 \times 10^{16} \text{ n}_{eq} \text{ cm}^{-2}\)
 ○ Replacement of inner modules foreseen

➢ **Increased** granularity
 ○ Better track separation at high pile-up

➢ **Reduced** material

➢ **Extended tracking** acceptance \(|\eta| \leq 4\)

➢ **High bandwidth** (hit rate up to 3.5 GHz/cm²)

* \(1 \text{ MeV neutron equivalent}\)
Phase-2 IT Layout

Barrel (TBPX)
- 4 layers
- 756 modules
- 3D sensors in layer 1
- 1x2 modules in layers 1, 2
- 2x2 modules in layers 3, 4

Forward disks (TFPX)
- 2 sides x 8 disks x 4 rings
- 1728 modules
- 1x2 modules in rings 1, 2
- 2x2 modules in rings 3, 4

Endcaps (TEPX)
- 2 sides x 4 disks x 5 rings
- 1408 modules
- 2x2 modules everywhere
- Ring 1 used for luminosity measurement
Mechanical structure

➢ Relatively easy installation and removal
➢ Low density (carbon fiber) support
➢ CO₂ cooling pipes

Close-up view of the barrel showing modules, e-links, cooling loops, flex, high voltage, serial power
Sensors

- Rectangular pixels (25 x 100 μm) everywhere
 - 100 μm in beam direction to match longer clusters in barrel mid-rapidity
 - Square pixels offer small to no improvement
- Planar (n-in-p, 150μm bulk thickness)
 - High hit efficiency (>99%)
- 3D
 - Slightly less efficient (up to 98%)
 - High margin for thermal stability
 - Lower bias voltage
- Barrel layer 1 requires 3D sensors for thermal stability after irradiation
- Planar sensors are used everywhere else for higher efficiency

Hit efficiency after irradiation

\((1 \times 10^{16} \text{ n}_{eq} \text{ cm}^{-2}) \)
Read-Out Chip (ROC)

- Designed by the RD53 collaboration between ATLAS & CMS
- Main goals:
 - Hybrid design (independent sensor R&D)
 - Increased granularity (smaller pixels)
 - High hit rate
 - Radiation tolerance
- RD53A was the first demonstrator chip:
 - Submitted in 2017
 - Half-size
 - 3 different AFE designs on the same chip
- RD53B-CMS (aka. CROCv1) was the pre-production prototype:
 - Submitted in 2021
 - Full size
 - CMS-specific (ATLAS flavor also available)
 - Linear AFE
- RD53C-CMS (aka. CROCv2) is the final CMS version:
 - Submitted in Oct. 2023
 - Many improvements and bug fixes but functionally similar to CROCv1
CROCv1

- Mixed-signal IC (digital & analog)
- Linear Analog Front-End (AFE):
 - Low threshold (< 1000 e-)
 - Time Over Threshold (ToT) linear w.r.t charge
- High bandwidth:
 - Multi-lane output
 - Event data compression
 - Can receive and forward data to/from each other (data-merging)
- Radiation tolerance:
 - Good performance up to ~1 GRad
 - Triplicated registers
 - SEU detection
- Highly configurable:
 - Pixel masking
 - Global threshold and ToT gain
 - Per-pixel threshold adjustment
 - Input/output merging & routing
- Calibration & monitoring:
 - Charge injection circuit
 - Radiation and temperature sensors
 - Internal voltage/current monitoring
- Testing:
 - Bit error rate (PRBS)
 - Error counters
 - Design for test logic with scan chain

Specifications:
- Pixel size: 50 x 50 μm^2
- Process: 65 nm (TSMC)
- Hit rate: 3.5 GHz/cm^2
- Trigger rate: 750 kHz
- Readout latency: 12.5 μs (500 BX)
- Output bandwidth: 1-4 x 1.28 Gbps
- Power consumption: < 1W / cm^2

Overview of AFE operation:

- Input from sensor or injection circuit
- Charge Sensitive Amplifier
- Comparator
- Pulse width (ToT) proportional to input charge
- Pixel masking
- Global threshold and ToT gain
- Per-pixel threshold adjustment
- Input/output merging & routing
- Charge injection circuit
- Radiation and temperature sensors
- Internal voltage/current monitoring
- Bit error rate (PRBS)
- Error counters
- Design for test logic with scan chain

Pixel array:

Periphery (chip bottom):

RD53B-CMS (CROC_v1)
[432x336]
size: 21.6 x 18.6 mm^2
CROCV1 Results

- Extensively tested and characterized
 - AFE measurements
 - Threshold & noise
 - ToT Gain
 - Hit detection delay (time-walk)
 - Threshold dispersion
 - Noise occupancy (spontaneous hits)
 - Several irradiation campaigns
 - Different sources (X-rays, various beams)
 - With and without sensor
 - Reaching up to ~1 GRad
 - Non-uniform with different gradients
- Test-beams
- Wafer-level testing
 - Custom probing setup
 - Comprehensive and fast testing procedure

Threshold dispersion distribution (1104 unirradiated chips)

Time-walk measurement & simulation

![Threshold Distribution graphs]

- 0 Rad
- 1 GRad

Per pixel

Global
ROC modules include:

- **Bump Bonding**: ROCs are bump bonded to the sensor.
- **Passive High Density Interconnect (HDI)**
 - Glued to the sensor with diamond-doped glue.
 - Wire-bonded to the ROCs.
- **Parylene Coating**
 - Protects wire-bonds.
 - Sensor bias voltage for ROC spark protection.
- **2 Sizes**
 - **1x2** (2 ROCs)
 - **2x2** (4 ROCs)
- **Different Design per Sub-Detector**

![Diagram](image)
Optical readout

Front-End:

➢ Optical links are used to minimize materials
➢ The **portcard** acts as a bridge between electrical and optical links
➢ Each portcard has 3 LpGBT ASICs
➢ Each LpGBT is connected to:
 ○ up to 7 electrical outputs @ 160 Mbps (downlinks)
 ○ up to 7 electrical inputs @ 1.28 Gbps (uplinks)
 ○ 1 optical TRx @ 10 Gbps (VTRx+)

Back-End:

➢ DTC (Data, Control and Trigger)
 ○ ACTA board (Apollo)
 ○ 2 x FPGAs + CPU
 ○ 72 optical links to the Front-Ends (FE)
 ○ 16 x 25 Gb/s links to DAQ (event data)
 ○ 8x25Gb/s links for luminosity monitoring

[Image of portcard and TFPX disk]
System data flow

- Portcards in TFPX and TEPX
- Adaptable bandwidth
 - From 0.25 to 4 uplinks per CROC (0.32 to 5.12 Gbps)
 - 1 downlink per module (160 Mbps)

Output links per module

<table>
<thead>
<tr>
<th>Layer</th>
<th>CROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring</th>
<th>CROP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Layer 1: 12x7

1x2 Module

CROP

1.25 Gbps → 160 Mbps

Portcard

LpGBT

Optical links 10 Gbps

DTC

FPGA

DAQ
Power system

➢ Serial powering
 ○ Up to 12 modules in series
 ○ Low power loss in the transmission lines
 ○ Minimal cable mass
 ○ No rad-hard DC-DC converter required

➢ On-chip Shunt-LDO (SLDO)
 ○ Voltage regulator (1.2 V)
 ○ Shunt dissipates excess power

➢ On-chip protection mechanisms prevent failure scenarios (e.g., overvoltage protection)

➢ 260 x 2 Power Supply Units (PSU) in total
Performance

- Offline simulation with CMSSW
- Significant improvements in efficiency and resolution
- High efficiency and low fake rate for PU up to 200

Efficiency vs. track distance from nearest track

- p_T resolution
- d_0 resolution
Conclusions

➢ The Inner Tracker has been redesigned for HL-LHC
 ○ New sensors and readout electronics
 ○ High granularity (more layers, more and smaller pixels)
 ○ Reduced material
 ○ Increased acceptance (from 3 to 4)

➢ Simulation shows promising results

➢ Extensively tested in the lab and in test-beams
 ○ At various levels of integration (from individual components to complete demo setups)

➢ The final readout chip was submitted in October
 ○ ATLAS flavor already successfully tested
 ○ Design and testing phases are mostly over

➢ Phase-2 upgrade installation during LS3
 ○ Jan. 2026 - April 2029

Thank you!