The future of bent MAPS, full-wafer (stitched) design: status and challenges

Magnus Mager (CERN)
on behalf of the ALICE collaboration

13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD13), Vancouver, Canada
Overview

- **Introduction & Motivation**
 - Monolithic Active Pixel Sensors
 - stitching
 - bending

- **Challenges**
 - power (dissipation/distribution)
 - yield (mitigation strategies)

- **Two stitched prototypes**
 - design approaches
 - first characterisation results

- **Next steps**
Monolithic Active Pixel Sensors (MAPS)

Reminder

- **Quadruple well process**: deep p-well to allow CMOS circuitry inside matrix
- **Detection layer**: 10-30 μm high-resistive epitaxial
- **Small collection electrode**: large Q/C, low power consumption
- **Thickness**: ~50 μm (!)
Full depletion
faster and more radiation tolerant

- Addition of a **low-dose n-implant**
 - developed together with foundry

- Now crucial for the 65 nm development

Partially depleted epitaxial layer
Charge collection time < 30 ns
Operational up to 10^{14} 1 MeV n_{eq}/cm^2

Fully depleted epitaxial layer
Charge collection time < 1 ns
after further improvements (outside ALICE):
operational up to 10^{15} 1 MeV n_{eq}/cm^2

Developed and prototyped within ALPIDE R&D

[doi:10.3390/s8095336]
Qualification of 65 nm CMOS
TPSCo 65 nm CMOS Imaging Technology

- Concentrated effort **ALICE ITS3** together with **CERN EP R&D**

- **Key benefits**
 - smaller features/transistors: higher integration density
 - smaller pitches
 - lower power consumption
 - **larger wafers** (200→300 mm)

- **Verification:**
 - comprehensive *first* submission: **55** prototype chips
 - goal: qualify the technology for radiation hardness and particle detection (**achieved**)
Qualification of 65 nm CMOS process variants

- Following the experience with 180 nm, the 65 nm CIS process could be modified
- Three different designs “standard”, “modified”, “modified with gap” are tried
 - modified with gap is the default for the next developments
- Largely increases the charge collection speed and radiation hardness
- Lowers the charge spread / cluster size → more signal per pixel
Qualification of 65 nm CMOS selected results

- Intrinsic time resolutions of 77 ps for 10 μm pixels
- >99% detection efficiency even after 10^{15} NIEL for 15 μm pixels at room temperature

Excellent performances of the 65 nm technology have been established experimentally.
Wafer-scale sensors: stitching introduction

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm2
 - modules are tiled with chips connected to a flexible printed circuit board
Wafer-scale sensors: stitching introduction

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
 - typical sizes of few cm2
 - modules are tiled with chips connected to a flexible printed circuit board

- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
 - actively used in industry
 - a 300 mm wafer can house a chip to equip a full half-layer
 - requires dedicated chip design
Stitching
simplified principle

what we “design”

what we want to fabricate

wafer
(Ø=300 mm)

reticle
(mask)
Stitching
simplified principle

- top part

wafer ($\varnothing=300$ mm)

reticle (mask)
Stitching
simplified principle

- repeated part (1)
Stitching simplified principle

- repeated part (2)

wafer ($\varnothing=300$ mm)

reticle (mask)
Stitching
simplified principle

- repeated part (3)

wafer
(⌀=300 mm)

reticle
(mask)
Stitching simplified principle

- final circuit is a concatenation of different parts of the masks

![Diagram of wafer and reticle (mask)]
Flexibility of silicon systematically

- **Monolithic Active Pixel Sensors** are quite flexible

- Bending force scales as \((\text{thickness})^{-3} \)
 - large benefit from thinner sensors

![Graph showing bending force vs. displacement for different thicknesses.](image)

Graph Details:
- **Channels**:
 - 97 μm (8x)
 - 50 μm (1x)
 - 40 μm
 - 30 μm
- **Parameters**:
 - L = 12 m
- **Legend**:
 - Each line represents a different thickness, with 97 μm being the thickest and 30 μm the thinnest.

Magnus Mager (CERN) | Stitched MAPS | HSTD13 | 07.12.2023 | 15
Flexibility of silicon

- **Monolithic Active Pixel Sensors** are quite flexible

- Bending force scales as (thickness)$^{-3}$
 - Large benefit from thinner sensors

![Graph showing force vs. displacement for different thicknesses of silicon](image)

- 97 μm (/8)
- 50 μm (x1)
- 40 μm
- 30 μm

$L = 12 \text{ m}$
Flexibility of silicon

- **Monolithic Active Pixel Sensors** are quite flexible

- Bending force scales as \((\text{thickness})^{-3}\)
 - Large benefit from thinner sensors
Flexibility of silicon

- **Monolithic** Active Pixel Sensors are quite flexible

- Bending force scales as (thickness)\(^{-3}\)
 - large benefit from thinner sensors
Flexibility of silicon

- **Monolithic Active Pixel Sensors** are quite flexible

- Bending force scales as $(\text{thickness})^{-3}$
 - large benefit from thinner sensors

![Image of testing setup and graph showing force vs. displacement for different thicknesses of sensors. The graph indicates that as the thickness decreases, the bending force increases significantly.]
Flexibility of silicon

- **Monolithic Active Pixel Sensors** are quite flexible.

- Bending force scales as $(\text{thickness})^{-3}$
 - Large benefit from thinner sensors.
Flexibility of silicon

- **Monolithic Active Pixel Sensors are quite flexible**

- Bending force scales as $(\text{thickness})^{-3}$
 - large benefit from thinner sensors
Flexibility of silicon

- **Monolithic** Active Pixel Sensors are quite flexible
- Bending force scales as $(\text{thickness})^{-3}$
 - large benefit from thinner sensors
Bending of fully processed wafers (48x speedup)
Bending of fully processed wafers
(48x speedup)
Bending of fully processed wafers
(48x speedup)
Bending of fully processed wafers
(48x speedup)
Bending of fully processed wafers
(48x speedup)
Bending of fully processed wafers
(48x speedup)
Bending of fully processed wafers (48x speedup)
Motivation: material budget

- Reduction to 1/7th
- By removing support mechanics, colling, and FPC

- $R = 18, 24, 30$ mm (beam pipe: 16 mm)
- $L \sim 28$ cm

→ Jian's ITS3 presentation
Challenges: powering power consumption

- Power consumption directly impacts material budget
 - power supply (metal, possibly circuit boards)
 - cooling (pipes, water, …)

- To take full advantage of the stitching, an operation with air cooling is wanted, setting a limit around 20-40 mW/cm²

- Off-state leakage is crucial in 65 nm
 - dedicated versions of standard cells are being designed
 - operating temperature needs to be contained

- Also worst process corners are to be watched out very carefully

<table>
<thead>
<tr>
<th></th>
<th>Power density [mW cm⁻²]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expected 25 °C</td>
</tr>
<tr>
<td>Left End Cap (LEC)</td>
<td>791</td>
</tr>
<tr>
<td>Active area (RSU)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Pixel matrix</td>
<td>15</td>
</tr>
<tr>
<td>Biasing</td>
<td>168</td>
</tr>
<tr>
<td>Readout peripheries</td>
<td>432</td>
</tr>
<tr>
<td>Data backbone</td>
<td>719</td>
</tr>
<tr>
<td></td>
<td>719</td>
</tr>
<tr>
<td></td>
<td>719</td>
</tr>
</tbody>
</table>
Challenges: powering power distribution

- 65 nm has a core voltage of 1.2 V
 - low power consumption
 - little voltage margin

- Sensor is ideally connected only at the short sides

- Local voltage regulators:
 - possible, but overall power consumption will increase

- Conductivity of metal layers is imposing a limit

\[\Delta V = k \left(\frac{\rho}{t} \right) J z^2 = k \left(\frac{\rho}{t} \right) \frac{P_S}{V_0} z^2 \]

Low-power design is key!
Challenges: yield
defect density and mitigation

- A wafer with a reasonably complex designs and w/o defects does not exist
- It is key to deal with imperfections and defects smartly
- Twofold strategy:
 - design critical (global) circuits very cautiously (large spacing)
 - allow to disable malfunctioning parts (masking, power-off)
- First prototypes to address the sensitivity and density of faults on different circuit plots (more on next slides)
 - MOSS: separate power domains for large pieces of a sensor
 - MOST: switches per small groups of pixels
Chip development roadmap
status and plans

- **MLR1:** first MAPS in TPSCo 65nm (2021)
 - successfully qualified the 65nm process for particle detectors

- **ER1:** first stitched MAPS (2023)
 - large design “exercise”
 - “MOSS”: 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 μm²): conservative design, different pitches
 - “MOST”: 2.5 x 259 mm, 0.9 MPixel (18 x 18 μm²): more dense design

- **ER2:** first ITS3 sensor prototype (2024)

- **ER3:** ITS3 sensor production (2025)
Prototypes: handling

ER1

- ER1 wafers are thinned down to 50 μm
- Tools to pick, handle and ship chips have been developed

A set of dedicated tools have been developed — handling is under control
Prototypes: handling
ER1

- ER1 wafers are thinned down to 50 μm
- Tools to pick, handle and ship chips have been developed

A set of dedicated tools have been developed — handling is under control
Prototypes: handling

ER1

- ER1 wafers are thinned down to 50 μm
- Tools to pick, handle and ship chips have been developed

A set of dedicated tools have been developed — handling is under control
Prototypes: handling

ER1

- ER1 wafers are thinned down to 50 μm
- Tools to pick, handle and ship chips have been developed

A set of dedicated tools have been developed — handling is under control
Prototypes: handling

ER1

- ER1 wafers are thinned down to 50 μm
- Tools to pick, handle and ship chips have been developed

A set of dedicated tools have been developed — handling is under control
ER1 test systems

MOSS

MOSS CHIP Carrier Card

Proximity_v2 Board

Proximity_v2 Board

Proximity_v2 Board

Proximity_v2 Board

Test system scale in size as the sensors do

MOST

+ same FPGA board (x1) as MOSS

+ oscilloscope for readout
Prototypes: MOSS design (1/2)

- MOSS is segmented into:
 - 10 repeated sensor units (RSU)
 - top and bottom halves with different pitches (22.5 and 18µm)
 - four different sub-matrices each with different analog designs

- Each half RSU is powered and can be tested independently
 - goal: understanding of yields and possible defects
 - difficulty: large number of power domains

- Stitched “back-bone” allows to control and readout the sensor from the left short side

Each half RSU is powered and can be tested independently:
- goal: understanding of yields and possible defects
- difficulty: large number of power domains

Stitched “back-bone” allows to control and readout the sensor from the left short side.
Prototypes: MOSS design (2/2)

- 1.4 x 26 cm monolithic stitched sensor

- 256 x 256 pixels
- 320 x 320 pixels
- LARGE PITCH PIXELS (22.5 μm)
- FINE PITCH PIXELS (18 μm)

Pitch 22.5 μm
- Conservative layout
- 7 mW/cm² (analog FE)
- 1μs peaking time

Pitch 18 μm
- Compact layout
- 11 mW/cm² (analog FE)
- 1μs peaking time
MOSS lab testing
power tests

- Powering up the large chip is not easy
 - some important learnings were made here for the next chip iteration (ER2)

- Current results are based on a very gentle and careful powering
 - “you cannot repeat the first power up”
 - subsequently allowing larger margins continues to increase the “yield”

- A large wafer-wafer spread is observed
 - compatible with first findings from the second prototype (MOST)

- “Powerable” units are also functionally working (slow control)
MOSS test beams

- Several campaigns in 2023
- Works out of the box
- Parameters still to be optimised and data to be analysed in more detail
- But very encouraging result!
MOSS test beams
Detection efficiencies and fake-hit rates

MOSS-4_W24B5_T6
Pitch: 22.5 μm
Type: 5 μm gap
$\textbf{I_{bias}} = 62$ DAC
$\textbf{I_{biasn}} = 100$ DAC
$\textbf{I_{reset}} = 10$ DAC
$\textbf{I_{db}} = 50$ DAC
$V_{\text{shift}} = 192$ DAC
$V_{\text{casn}} = 64$ DAC
$V_{\text{psub}} = 0$ V (via 0 Ω)
Strobe length: 6 μs
$T = 30{^{\circ}}C$

ALICE ITS3 beam test \textit{preliminary},
@ CERN PS September 2023,
10 GeV/c hadrons,
Plotted on 23 Nov 2023

Operational with a bit of margin — NB: bias settings are still being optimised
MOSS test beams
spatial resolutions and cluster sizes

Spatial resolutions and cluster sizes match those of small prototypes
Prototypes: MOST design (1/2)

- MOST is based on a very densely integrated pixel matrix

- Power is distributed globally
 - yield is addressed by a highly granular set of switches that allow to turn off faulty parts locally

- Readout is purely asynchronous and hit-driven
 - low power consumption + timing information
Prototypes: MOST design (2/2)

- Each set of 4 pixels contains a local oscillator and address serialiser
 - only active when a hit is detected
- Signal is buffered several times along chip
- Sharing of the same transmission channels along a column
Digital pulsing & readout concept

- A test pulse can be fed at the bottom - travels across the full chip to the top - and then back

- Fired pixels send their address to the bottom - as serial bitstream of \(~1\text{Gbit/s}\) - there are 256 of these lines on MOST (4 per column)

- Total round trip is expected to be of \(O(200\ \text{ns})\) for the top most stitch

- Pulsing and readout signal each go via up to **880 repeaters over 26 cm**
Pulsing & readout measurement

- All 256 readout lines work across the full length of the chip/across all stitches

- Decoding of pixel addresses work nicely

- Tests of the analog front-ends are starting (they are alive, stay tuned for more soon)
Pulsing & readout measurement

- All 256 readout lines work across the full length of the chip/across all stitches
- Decoding of pixel addresses work nicely
- Tests of the analog front-ends are starting (they are alive, stay tuned for more soon)
Next steps
MOSAIX (ER2) (1/2)

▶ “MOSAIX” is being designed
 - a real sensor with all functionality
 - to be used in an experiment (ALICE ITS3)

▶ Learnings from MOSS and MOST on stitching are folded into the design
 - powering granularity has been adjusted: 20→144 per segment
 - introduction of on-chip power switches

▶ Interfaces with off-detector electronics are incorporated

▶ New low-leakage standard cell library

▶ Stitching plan fixed and under review with foundry
Next steps
MOSAIX (ER2) (2/2)

- Left end cap circuit
 - like a separate “readout chip”
- 12 repeated units with 12 independent matrices each
- Design ongoing, plan to submit in fall 2024
Summary

- **Stitched, wafer-scale MAPS** offer a unique possibility to build ultra-light, highly granular detectors

- **Bending** of 50 μm-thick chips and wafers is exercised routinely

- **Two key design challenges** are being dealt with:
 - power
 - yield

- Two 26 cm long, stitched prototypes ("MOSS", "MOST") have been fabricated in a first engineering rung ("ER1") in TPSCo 65 nm
 - both work!
 - detailed characterisation is ongoing

- Next step: integration of a sensor that can be used on a detector ("MOSAIX")
 - design is ongoing for submission in fall 2024
Thank you!
MOSS probe testing on wafer level

- Dedicated needle card for MOSS ready
- Compatible with test system for chips on carriers
 - first functional tests of MOSS were actually done using this needle card
- Systematic impedance tests carried out for 8 wafers
MOSS probe testing
Impedance measurements

under detailed analysis right now!