# **Development of the X-ray polarimeter using CMOS imager: polarization sensitivity of** a 1.5 µm pixel CMOS sensor



#### Toshiya Iwata (The University of Tokyo) toshiya.iwata@phys.s.u-tokyo.ac.jp

Hirokazu Odaka, Kota Ishiwata, Haruki Kuramoto (Osaka University), Tsubasa Tamba (JAXA/ISAS), Kouichi Hagino, Aya Bamba, Satoshi Takashima, Takahiro Minami, Masahiro Ichihashi, Shota Arai, Tatsuaki Kato, Hiroumi Matsuhashi (The University of Tokyo)

### Abstract-

We are developing an imaging polarimeter using a micro-pixel complementary metal-oxide-semiconductor (CMOS) image sensor and a coded mask to realize polarimetry in the hard X-ray band of 10–30 keV. We call the project cipher (Coded Imaging Polarimetry of High Energy Radiation; Odaka et al. 2020). In this study, we evaluate the polarization sensitivity of a CMOS image sensor with a pixel size of 1.5 µm manufactured by Canon and that with a pixel size of 2.5 µm manufactured by Gpixel. We measure the modulation factor of the sensors. The Obtained modulation factors of the 1.5  $\mu$ m sensor were  $9.52 \pm 0.71$  % at 10 keV and  $17.6 \pm 1.3$  % at 22 keV, which were higher than that of the sensor with a pixel size of 2.5 µm. These results show that the modulation factor can be improved by using a finer-pixel sensor.

#### Introduction

- X-ray polarimetry in astrophysics is a promising approach to studying the structure of the celestial objects.
  - Synchrotron radiation
- Magnetic field
- Scattering
- Geometrical structure
- We are developing a hard X-ray imaging polarimeter using a micro-pixel CMOS sensor.

The project is called cipher (Coded Imaging Polarimetry of High Energy Radiation; Odaka et al. 2020).

For the details of imaging, see Poster 154 (T. Tamba)

- Photoelectrons tend to be emitted to the polarization angle of incident photons:  $(d\sigma/d\Omega) \propto 1 + \cos 2\phi$  (Fig. 1; Heitler 1954).
- Tracking the photoelectrons with a micro-pixel sensor (Fig. 2)
  - information on polarization





Figure 5: beam experiment

#### **Analysis procedure**

 Estimate the emission direction of photoelectron by maximizing the second moment of the charge distribution,  $M_2(\phi)$  (Fig. 6)

 $M_{2}(\phi) = \frac{\sum_{i} Q_{i} x_{i}^{2}(\phi)}{\sum_{i} Q_{i}}$ (Bellazzini et al. 2003)

\* $Q_i$ : charge of the pixel *i*,  $x'_i(\phi) = (x_i - x_b)\cos\phi + (y_i - y_b)\sin\phi$  where  $(x_i, y_i)$  are the coordinates of the pixel *i*, and  $(x_b, y_b)$  is that of the barycenter

- Correct the distribution of the photoelectron direction (modulation curve; Fig. 7)
- Subtract spurious modulation due to the instrument:
- Recreate the scenario with two sensors positioned at a 45° rotation to correct for differences in modulation due to the incident polarization angle:



Figure 1: Schematic of photoelectric absorption.

Figure 2: Schematic of the principle of photoelectron tracking.

Photoelectron

#### • Our objective

to evaluate modulation factor (MF) of CMOS sensors

\*MF: modulation amplitude for perfectly polarized incident radiation MF is an important parameter to calculate the sensitivity for a polarimeter

 $MDP_{99} \simeq \frac{4.29}{\sqrt{2}}$  (Kislat et al. 2015)  $MDP_{99}$ : the minimum detectable polarization on 99% confidence level  $MF_{\sqrt{N}}$ 

N: the total detection counts

## **Experiments**

#### Sensors

Table 1: CMOS sensor

|                   | 1.5 $\mu$ m sensor (Canon) | 2.5 $\mu$ m sensor (Gpixel)      |
|-------------------|----------------------------|----------------------------------|
| Pixel size        | 1.5 $\mu$ m × 1.5 $\mu$ m  | $2.5 \ \mu m \times 2.5 \ \mu m$ |
| • 1.5 $\mu$ m ser | nsor                       |                                  |

Smaller pixel size

higher photoelectron tracking accuracy

• The corrected distributions were fit with sine curve to determine the MF (Fig. 7)





Figure 6: charge distribution and the direction which maximize the second moment

• Utilizing a 1.5 µm sensor resulted in an **improved MF** 





#### MF is expected to be larger





**Figure 3**: 1.5 µm sensor

**Figure 4**: 2.5 µm sensor

### **Beam experiments to measure MF**

 We conducted beam experiment at SPring-8 and PF-KEK to measure MF (Fig. 5)

\*SPring-8: the synchrotron radiation facility

\*PF-KEK: the Photon Factory of the High Energy Accelerator Research Organization

- Irradiated almost 100% polarized monochromatic beam to the CMOS sensors
- Rotated the stage to change the incident polarization angle
- Acquired data at multiple energies

The required detection count:  $9 \times 10^5$  @ 10 keV,  $3 \times 10^5$  @ 22 keV to detect 5% polarization with 99% confidence using the 1.5 µm sensor

### Conclusion

• Utilizing a 1.5 µm sensor resulted in an improved modulation factor (MF) with values of  $9.52 \pm 0.71 \%$  at 10 keV and  $17.6 \pm 1.3 \%$  at 22 keV.

#### Reference

- Bellazzini R., Angelini F., Baldini L., et al., 2003, SPIE, 4843, 383.
- Heitler, W., 1954
- Kislat F., Clark B., Beilicke M., Krawczynski H., 2015, APh, 68, 45.
- Odaka H., Kasuga T., Hatauchi K., et al., 2020, SPIE, 11444, 114445V.