Silicon photomultipliers for the nEXO light detection system

Prof. Simon Viel, on behalf of the nEXO Collaboration

nEXO is a proposed experiment to look for neutrinoless double beta decay ($0\nu\beta\beta$) with 5 tonnes of liquid xenon (LXe) enriched in $\text{Xe}_\text{enriched}$ to 90% purity. The SNOLAB Cryopit cavern is committed to a large-scale $0\nu\beta\beta$ detector that could be nEXO, and is the nEXO collaboration’s preferred site.

nEXO relies on both charge and light detection in the single-phase time projection chamber (TPC) to achieve the best possible energy resolution: 1% at the decay Q-value ($Q_{\beta\beta} = 2.548\text{ MeV}$)

Two SiPM vendor candidates, Fondazione Bruno Kessler (FBK) and Hamamatsu Photonics (HPK) offering vacuum ultraviolet (VUV) sensitivity i.e. photodetection efficiency (PDE) > 15% at the LXe scintillation peak wavelength of 175 nm, are evaluated against nEXO photodetection requirements:

- HPK vendor candidates: G. Gallina et al. (2022) EPJC 82, 1125, arXiv:2209.07765

HPK devices appear to satisfy all requirements, and are available with through-silicon via (TSV). FBK produced a new version of their VUV SiPMs that will be characterized by the collaboration. External cross-talk measurements are being carried out to ensure this will not be an issue for nEXO. Radiopurity assays are performed on components, and will be performed on the final devices.

The nEXO photodetection system will be comprised of silicon photomultipliers (SiPMs):

- 1 x 1 cm2 SiPMs grouped in 6 cm2 readout channels
- 96 SiPMs will be mounted on each 8 x 12 cm2 tile, on the back of which an ASIC readout chip
- 20 tiles will be mounted on each stave (electroformed copper)
- 24 staves will comprise the full barrel of the detector → Total: 4.6 m2 sensitive area

Several cryogenic test setups collect SiPM characterization data for nEXO, such as the "Vacuum ultraviolet efficiency, reflectivity and absorption" (VERA, shown) setup located at TRIUMF; and others at BNL, Erlangen, IHEP, McGill, Stanford, U. Alabama, U. Mass., and Yale.

Rapid characterization methods are developed for quality control during nEXO construction. Current-voltage (IV) measurements could be carried out on each channel at the underground laboratory, with possible rework procedures before final installation into nEXO. Dark noise rate and correlated avalanche probability can be extracted from fits to IV data:

Photon-to-digital converters (also known as 3D digital SiPMs):

Developed by nEXO collaboration members at U. Sherbrooke with C2MI and Teledyne DALSA. Instead of analog front-end circuits, these devices feature digital active quenching circuits connected to each single-photon avalanche diode (SPAD), digitizing photon signals directly. Configurable digital readout electronics allow for reduced power consumption and lower noise. 3D integration is achieved by bump-bonding each SPAD array to a CMOS electronic readout chip. On the back of the silicon interposer, the tile controller has digital signal processing capability. VUV sensitivity may not be demonstrated in time for this technology to be selected for nEXO. Development continues toward future experiments and other applications.

References:

nEXO Collaboration: G. Gallina et al. (2022) EPJC 82, 1125, arXiv:2209.07765

B. Chana, M. Mahbub, F. Retiere, S. Viel (2023) JINST 18, C03004

J.-F. Pratte et al. (2021) Sensors 2021, 21(2), 598

13th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD13), December 3-8, 2023, Simon Fraser University, Vancouver, Canada