Development of Two-Dimensional Neutron Imager with a Sandwich Configuration

Y. Kamiya ${ }^{1 *}$, R. Nishimura ${ }^{2}$, S. Mitsui ${ }^{3}$, Z. Wang ${ }^{4}$, C. L. Morris ${ }^{4}$, M. Makela ${ }^{4}$, S. M. Clayton ${ }^{4}$, J. K. Baldwin ${ }^{4}$, T. M. Ito4, S. Akamatsu ${ }^{5}$, H. Iwase ${ }^{2}$, Y. Arai${ }^{2}$, J. Murata ${ }^{5}$, and S. Asai ${ }^{1}$
${ }^{1}$ Department of Physics and International Center for Elementary Particle Physics, The University of Tokyo, Tokyo 113-0033, Japan
2High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
${ }^{3}$ Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
4Los Alamos National Laboratory, New Mexico 87545, USA
${ }^{5}$ Department of Physics, Rikkyo Univesity, Tokyo 171-8501, Japan
* kamiya@icepp.s.u-tokyo.ac.jp
https://www.icepp.s.u-tokyo.ac.jp/~kamiya/

(A) Abstract

+ We are conducting experiments to examine the equivalence principle in Quantum regime.
+ Time-resolved neutron imager is an essential device for the experiment.
+ We have developed boron-coated SOI-CMOS based imager, called ${ }^{10} \mathrm{~B}-I N T P I X 4$.
+++ It showed fine spacial resolution less than 4 microns as a sigma of line spread function[1].
+ To mitigate/correct the one of error sources on the neutron positioning, new neutron imager with sandwich configuration, ${ }^{10 B}$-INTPIX4-sw, has been developed. +++ This presentation shows the first measurements of neutron with this new imager configuration

(B) Testing Equivalence Principle

+ Discussions regarding the expression of the equivalence principle within the framework of quantum theory are not mature.
+ We expect to develop and test models for that, by analysing a spacial and a temporal behaviour of quantum bound states of ultra-cold neutrons (UCNs) under the gravity.
= (1) demonstration of the binding system of UCNs[2] =
$=(2)$ testing equiv. principle in quantum regime[3] =

$\left\{-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}}+V(z)\right\} \psi_{n}(z)=E_{n} \psi_{n}(z)$ where $V(z)= \begin{cases}m g z, & z \geq 0 \\ \infty, & z \leq 0\end{cases}$

$$
\begin{array}{rll|}
\begin{aligned}
\text { scales } & \\
z_{0} & =\left(\frac{\hbar^{2}}{2 m_{i} m_{g} g}\right)^{1 / 3}
\end{aligned} \sim 6 \mu \mathrm{~m} \\
E_{0} & =\left(\frac{m_{g}^{2} g^{2} \hbar^{2}}{2 m_{i}}\right)^{1 / 3} & \sim 0.6 \mathrm{peV}
\end{array} \begin{aligned}
& \\
& \mathrm{m}_{\mathrm{g}} \text { : gravitational mass } \\
& \mathrm{m}_{\mathrm{i}} \text { : inertial mass }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\psi_{(z, t=0)}=a_{1} \phi_{1(z)}+a_{2} \phi_{2(z)} \\
\left|\psi_{(z, t)}\right|^{2}=\left|\psi_{(z, t=0)}\right|^{2}-4 a_{1} a_{2} \phi_{1(z)} \phi_{2(z)} \sin ^{2} \frac{\left(\varepsilon_{2}-\varepsilon_{1}\right)}{2} t
\end{array} \\
& \text { oscillating term }
\end{aligned}
$$

(C) Neutron Imager with Sandwich Configuration

specification of the base sensor (INTPIX4):

pixel size:	17×17 microns 2
number of pixel:	832×512 pixel 2
readout time:	$280 \mathrm{~ns} /$ pixel
wafer thickness:	300 microns

(D) Response Tests

- at Los Alamos Neutron Science Center (LANSCE)

+ The cleaner remove higher energy UCNs.
+ It was set to extract 100 neV UCNs.
+ UCN flux was measured to be $1.81 / \mathrm{cm}^{2} / \mathrm{s}$ by $\mathrm{ZrS} /{ }^{10} \mathrm{~B}$ reference detector

References

[1] Y. Kamiya, T. Miyoshi, H. Iwase et al., NIMA 979, 164400 (2020).
[2] G. Ichikawa, S. Komamiya, Y. Kamiya et al., PRL 112, 071101 (2014).
[3] Y. Kamiya, The Physics of Fundamental Symmetries and Interactions - PSI2016 (2016) and PSI2019(2019). number of pixel: 832×512 pixel 2 wafer thickness: 300 microns

(E) UCN Signals

+ acceptance of the confidence condition is about $1 / 3$

+ relative efficiency for UCNs was 16% with respect to the reference detector

Acknowledgements

This work is supported by JSPS KAKENHI Grant No. 23H00106, 18H04343, 18H01226, 17H05397 and TIA kakehashi 2021/2022/2023.
We appreciate Dr. Toshinobu Miyoshi for his significant contribution in the early stages of the development.

