X-ray polarimetry and spectroscopy with the CMOS detector IU233N5-Z

Taishu Kayanoki, Hiromitsu Takahashi, Ryota Niwa, Teruaki Morishita, Masaki Hashizume, Yasushi Fukazawa, Yusuke, Suda (Hiroshima University), Koji Kawabata (Hiroshima Astrophysical Science Center)

1. Introduction

Polarization of X-/ γ -rays are important clue to understand the highenergy radiation mechanism, however, γ -ray polarization is difficult to observe, and there are not enough observations

	CMOS	Scintillator					
γ-ray Sensitivity	Not Good	Very Good	Scintillator with microstructure				
Spatial resolution	Good	Bad					
Recently, scintillators with ~µm microstructure have been developed							
CMOS with good spa	tial resolution	Num	APC-V 5 µm				

4. Imaging (α -/ β - ray) Only CMOS

We did imaging with very small pixels $(1.12 \mu m)$ Alpha particle (²⁴¹Am) 5 MeV Beta particle (⁹⁰Sr) ~1 MeV

• α -ray: mean free path is short \rightarrow The event is spread over a few pixels • β -ray: mean free path is long \rightarrow The event is spread over tens pixels

Only CMOS 5. X-ray evaluation (Spectrum)

Scintillator (CsI(TI)) **Leading Edge Algorithms**

- density: 4.53 g/cm³
- light yield: 56 photons/keV
- size: $1 \text{ cm} \times 1 \text{ cm} \times 3 \text{ cm}$
- decay time: 1050 ns
- without microstructure [3]

CsI(TI) with ESR

3. X-ray Polarization Only CMOS

We irritated the polarized X-ray at SPring-8 We used the astro software ([5]) to take images

70 keV

182 eV 176 eV	double	74079	6991	0.35				
	> triple	87507	4820	0.41				
2 4 6 8 10 12 14 Energy (keV)								
From the result of ⁵⁵ Fe, in CMOS, the reaction probability <i>P</i> is								
⁵⁵ Fe Detected rate 0.235 (count/sec) - 1.00×10 ⁻⁵								
$P = \frac{1.98 \times 10^{-5}}{5^{5}}$ Fe emission source rate = 11,867.9 (count/sec) = 1.98 \times 10^{-5}								
Depletion layer thickness: $d = 6 \mu m$								
6. Readout of scintillation light								
We irradiated ¹⁵⁷ Cs to the scintillator and ¹³⁷ Cs (662keV) ^{1cm} _{3cm} γ-ray ^{1cm} _{3cm} to CMOS								
We set the ¹³⁷ Cs (18.5 MBq) at 1 cm from the scintillator (Exposure time = 1200ms) (Exposure time = 1200ms) (Exposure time = 1200ms) (Exposure time = 1200ms) (CsI(TI) with ESR reflector) (Control in the scintillation light) (Control in the scintil the scintillation l								
Without Cs Brighter	With C	Cs	(Scintillation light is of produces one electro	optical, thus, one photon on-hole (pair))				
			Irradiated w	ith ¹³⁷ Cs,				