

Radiation tolerance tests and performance verification of pnCCD at high temperature for future satellite mission HiZ-GUNDAM

Shuta Takahashi¹, Makoto Arimoto¹, Hatsune Goto¹, Ryuji Kondo¹, Daisuke Yonetoku¹, Tatsuya Sawano¹, Naoki Ogino¹, Junko Hiraga², Takanori Sakamoto³, Shen Hsien-chien³, Robert Hartmann⁴, Lothar Strüder⁴, Peter Holl⁴, Satoshi Hatori⁵, Ryoya Ishigami⁵, Akihiro Doi⁶

¹Kanazawa University, ²Kwansei Gakuin University, ³Aoyama Gakuin University, ⁴PNSensor, ⁵The Wakasa Wan Energy Research Center,⁶JAXA

Q 120

1.HiZ-GUNDAM and wide field view X-ray monitor

5.Dark noise distribution

- We calculated dark current at each area of pnCCD.
- Dark current is proportional to dose and temperatures.

Energy range	0.4 keV to 4keV
Field of view	0.5 sr
Exposure time	0.01s to 0.1s(TBD)
Mission year	3yr to 5yr
Operating temperature	<-20 ℃

2.pnCCD

6.Spectrum • We research Energy resolution by make spectrum.

• One of back illuminated type CCD

- CCD which is capable of reading out all columns in parallel.
- ✓ Fast framerate is realized. (100Hz~10Hz)
- FM: 5.5cm ×5.5cm pnCCDs

pnCCD for basic investigation

Pixel size	75um × 75um
Number of pixels	128 $ imes$ 256 pixels
Depletion layer's depth	450um

- Spec of pnCCD will be degraded by radiation in the space.
- I'll introduce about degrade of the Spec ✓ Dark current.
- ✓ Energy resolution
- ✓ CTI

• Energy resolution is proportional to dose and temperature

- The Wakasa Wan Energy Research Center
- 10 MeV proton, 0.9 rad (3yr in orbit) Flux: $\sim 1 \times 10^6$ cm²/s

Set up go into chamber

10MeV protons

• Make dose gradation like below.

 We investigate radiation tolerance of pnCCD by irradiating protons. ✓ 3months, 1 year and 3 years dose at HiZ-GUNDAM orbit.

We researched Dark current, Energy resolution and CTI. \checkmark These results are important to future development.

Future plan

• More detailed research is needed about effects of high energy and low energy protons individually.

9.Reference

[1]Meidinger.et al. "pnCCD for photon detection from near-infrared to X-rays" Nuclear Instruments and Methods in Physics Research A 565 (2006) 251–257

[2] Meidinger.et al. "CCD Detector Development for the eROSITA Space Telescope "IEEE Symposium on Nuclear Science. DOI: 10.1109/NSSMIC.2010.5873711

13th International "Hiroshima Symposium on the Development and Application of Semiconductor Tracking Detector (HSTD13) at Vancouver, CANADA