

Weizmann INSTITUTE OF SCIENCE

universitätfreiburg

displacement damage in n⁺-in-p silicon diodes M. Mikeštíková^{a,*}, I. Zatočilová^{a,b}, P. Federičová^a, P. Gallus^c, R. Jirásek^a, J. Kroll^a, J. Kvasnička^a,

The study of gamma-radiation induced

V. Latoňová^a, I. Mandič^d, K. Mašek^e, P. Novotný^{a,f}, R. Přívara^{a,g}, P. Tůma^a

^a Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 18200 Prague 8, Czech Republic

^b Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany

^c UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Prague – Zbraslav, Czech Republic

^d Experimental Particle Physics Department, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Introduction:

- Currently, there is a lack of studies of gamma irradiated high resistivity p-type silicon.
- Bulk damage of silicon detectors induced by gamma rays was previously studied in detail for n-type bulk.
- The presented study focuses on bulk damage caused by gamma irradiation from ⁶⁰Co to p-type silicon diodes with various oxygen concentrations and silicon bulk resistivities.
- The main goal of the study was to characterize the gamma-radiation induced displacement damage by measuring currentvoltage characteristics (IV), and the evolution of the full depletion voltage (V_{FD}) with total ionizing dose by measuring capacitance-voltage characteristics (CV).
- This study was performed to quantitatively evaluate the bulk damage in Si n⁺-in-p high resistivity sensor when exposed to radiation up to high total ionizing doses (TID) 8.3 MGy

^e Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, Prague 8, Czech Republic ^f Faculty of Physics, Weizmann Institute of Science 234 Herzl Street, Rehovot 7610001 Israel

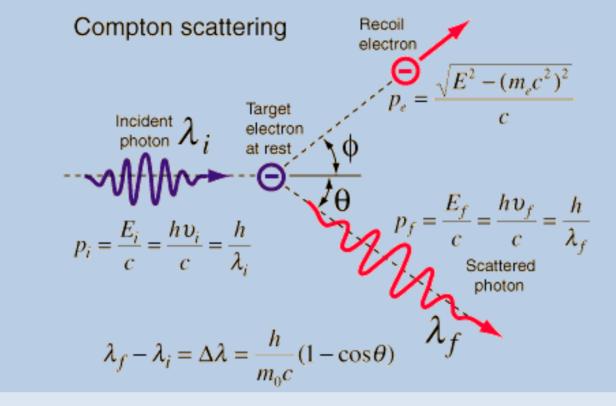
^g Joint Laboratory of Optics of Palacky University and Institute of Physics of the Czech Academy of Sciences, 17. listopadu 1154/50a, 779 00 Olomouc, Czech Republic

Samples:

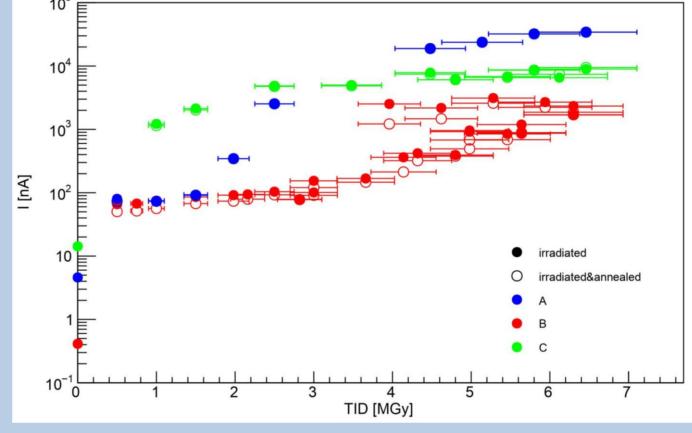
- Study was carried out on three types n⁺-in-p standard float zone diodes from three different manufacturers.
- Diodes have comparable active areas and thickness but different silicon bulk resistivity.

	Α	В	С
Active Thickness d [µm]	285	290	285
Active area A [mm ²]	49.95	51.55	50.17
Active Volume V [cm ³]	0.0142	0.0149	0.0143
Bulk Capacitance C _{bulk} [pF]	18.79	19.48	19.88
Full Depletion Voltage V _{FD} [V]	283.6 ± 12.0	273.4 ± 10.7	36.9 ± 8.3
Bulk Resistivity ρ [kΩ.cm]	3.077 ± 001	3.301 ± 0.001	23.975 ± 4.012

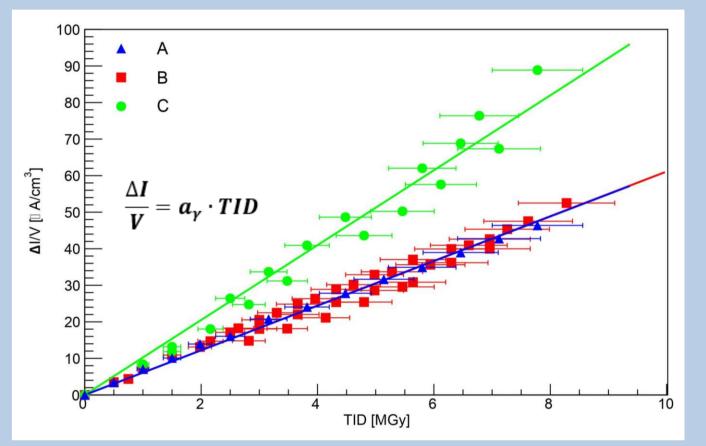
Irradiation:


- Diodes irradiated by ⁶⁰Co gamma source in Charge Particle Equilibrium box according to ESA/SCC Basic Spec. No. 22900
 - Dose enhancement from low-energy scattered radiation is minimised by producing electron equilibrium
- Uniform distribution of energy deposited in samples is ensured
- Temperature up to 35 °C
- Dose rate 160-190 Gy/min in silicon
- Dose rate uncertainty: less than 5% within the box.
- Diameter of irradiation area 6 cm

- V_{FD} and to extract electric field distribution and the sign of space charge N_{eff} of silicon diodes irradiated to the lowest and the highest TID
- 660nm

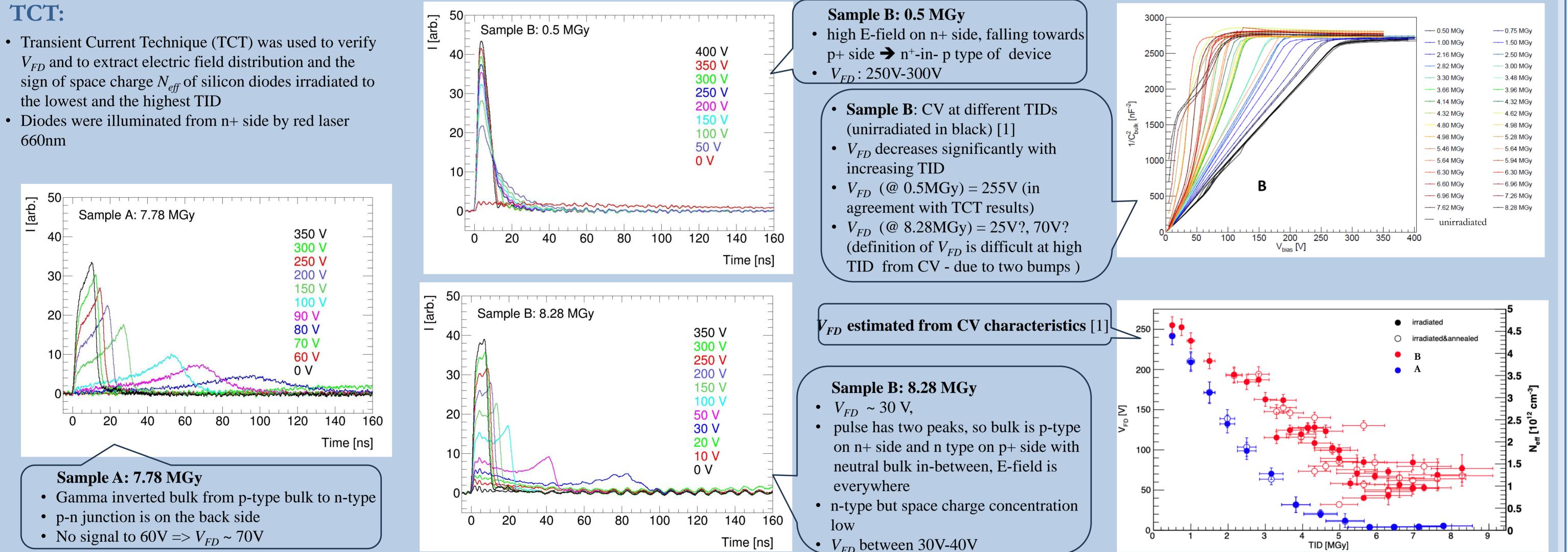

- Displacement damage caused by ⁶⁰Co gammas is primarily due to interaction of Compton electrons having a maximum energy of 1.2 MeV.
- Cluster production is not possible minimum electron energy needed for clusters is ~8 MeV.
- Max. recoil energy for the primary knock-on Siatom by Compton electron is ≈ 140 eV.
- Damage is exclusively due to point defects.
- Min. electron energy needed for single displacements for V-I (Frenkel pair) is 260 keV

Leakage Current after Irradiation:

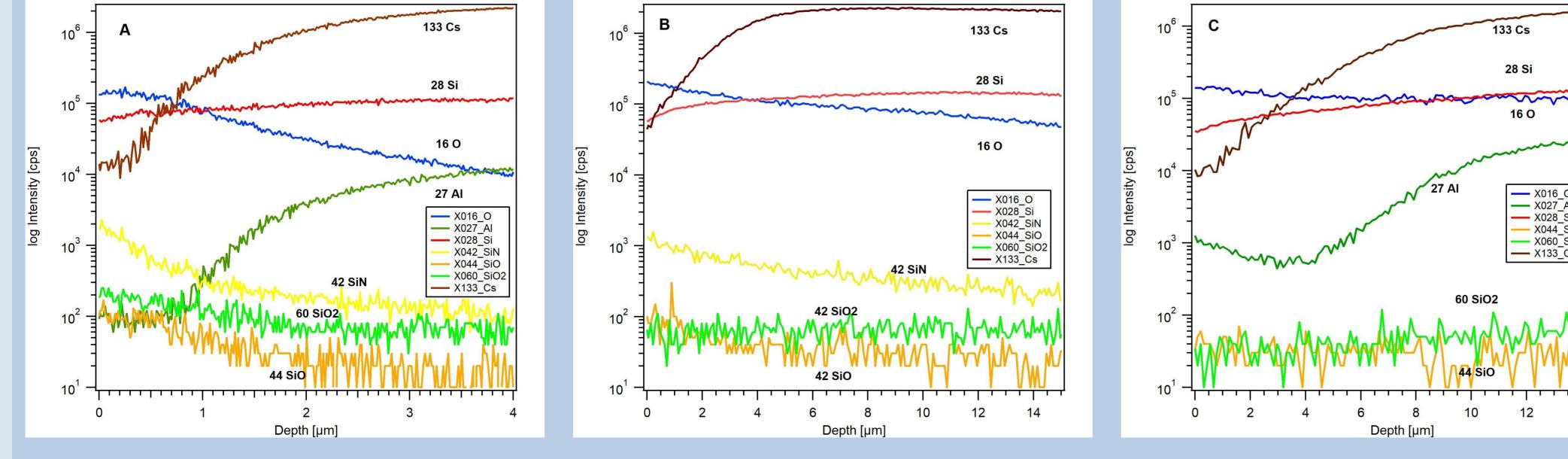

• Great care was taken to properly determinate leakage current contributing only to active volume of diode (*I*_{bulk}) by subtracting parasitic currents contributed by diode surface (I_{sur}) . $I_{tot} = I_{bulk} + I_{sur}$

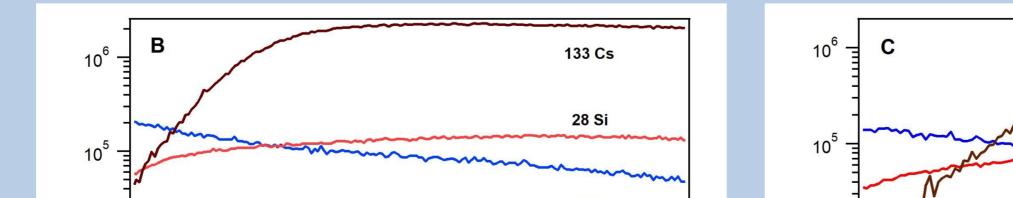
Surface leakage Current after gamma irradiation

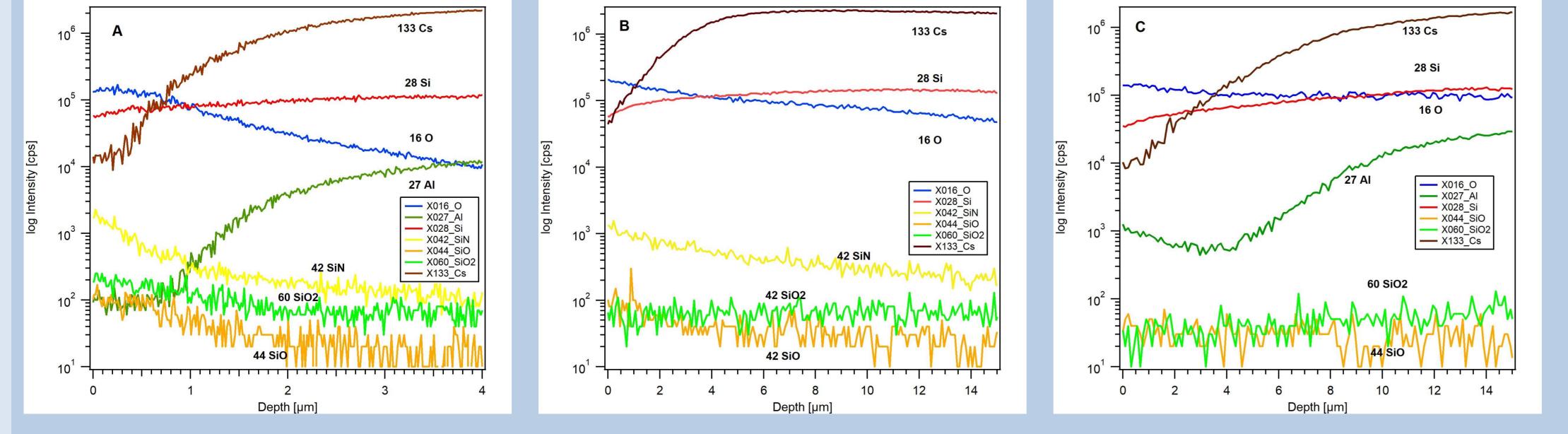
• Surface current of diode increases significantly even at the initial TID, after which it rises only gradually


Bulk leakage Current after gamma irradiation

- Bulk leakage current normalised to active volume at V_{FD} vs TID
- Linear increase of bulk current with increasing TID


Diodes with similar ρ and V_{FD} show same radiation damage.


Sample	α _γ [A [.] cm ^{-3.} MGy ⁻¹]	ρ [kΩ [.] cm]	V _{FD} [V]
А	(6.33 ± 0.08) ⁻¹⁰⁻⁶	3.077 ± 001	283.6 ± 12.0
В	(6.49 ± 0.09) [.] 10 ⁻⁶	3.301 ± 0.001	273.4 ± 10.7
С	(10.20 ± 0.30) [.] 10 ⁻⁶	23.975 ± 4.012	36.9 ± 8.3



SIMS:

- Secondary-ion mass spectrometry (SIMS) technique used to determine the relative concentration of oxygen in individual samples
- Primary source Cs ions with energy of 7keV

- The SIMS method used does not allow for the determination of absolute concentrations of oxygen; rather, it only provides relative concentrations in comparison to individual samples.
- Concentration of oxygen decreases with increasing depth of
- diode.
- Decrease in oxygen concentration is least pronounced in sample C and most significant in sample A.
- Sample B, unlike the other two samples, does not contain a • measurable concentration of aluminium.

Conclusions:

- Bulk leakage current of gamma irradiated high resistivity p-type silicon increases linearly with total ionizing dose, and damage coefficient depends on initial resistivity and/or oxygen concentration of silicon diode
- Effective doping concentration, and therefore also V_{FD} , significantly decreases with increasing total ionizing dose, before starting to increase again at specific dose. This indicated to silicon bulk type inversion.
- We assume that initial decrease of effective doping concentration is caused by effect of acceptor removal.
- The Transient Current Technique (TCT) measurements confirmed type inversion in both measured diodes irradiated to high TIDs.
- IV and CV measurements of the gamma irradiated diodes did not reveal any annealing effect.

Acknowledgement:

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic coming from the projects LTT17018 Inter-Excellence and LM2018104 CERN-CZ, by Charles University grant GAUK 942119

References:

I. Zatocilova et al., Study of Bulk Damage of High Dose Gamma Irradiated p-type Silicon Diodes with Various Resistivities, Prepared for submission to JINST

HSTD13, Vancouver B.C. Canada, Dec 3rd – Dec 8th, 2023