Flavour physics: status and prospects

Marzia Bordone

12th International Workshop on the CM Unitarity
Santiago de Compostela
18.09.2023

Outline:

1. The problem of flavour

2. Open problems in hadronic physics

3. A glance into BSM physics

Despite the SM successes, there are open problems:

Despite the SM successes, there are open problems:

Hierarchy problem

dark matter/dark energy

flavour hierarchies

neutrino masses

gravity

Despite the SM successes, there are open problems:

Despite the SM successes, there are open problems:

Despite the SM successes, there are open problems:

(Hierarchy problem) dark matter/dark energy flavour hierarchies neutrino masses gravity

The (two) flavour problems

- 1. The SM flavour problem: The measured Yukawa pattern doesn't seem accidental
 - ⇒ Is there any deeper reason for that?

- 2. The NP flavour problem: If we regard the SM as an EFT valid below a certain energy cutoff Λ , why don't we see any deviations in flavour changing processes?
 - ⇒ Which is the flavour structure of BSM physics?

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

$$\mathcal{L}_{\mathrm{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

$$Y_u \sim y_t$$
 Exact $U(2)^n$ limit

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

An approximate $U(2)^n$ is acting on the light families!

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

An approximate $U(2)^n$ is acting on the light families!

• In the SM: accidental $U(3)^5 \to \operatorname{approx} U(2)^n$

$$\mathcal{L} = \boxed{\mathcal{L}_{\mathrm{gauge}}} + \boxed{\mathcal{L}_{\mathrm{Higgs}}} + \boxed{\sum_{d,i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^d}$$

Large Flavour symmetry

Flavour degeneracy is broken

Three replica of the same fermion fields

The breaking is peculiar

- In the SM: accidental $U(3)^5 \to \operatorname{approx} U(2)^n$
- What happens when we switch on NP?

$$\mathcal{L} = \left[\mathcal{L}_{\text{gauge}}\right] + \left[\mathcal{L}_{\text{Higgs}}\right] + \left[\sum_{d,i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^d\right]$$

- What is the energy scale of NP?
- Why haven't observed any violation of accidental symmetries yet?

Generic Flavor Structure

NMFV
Pierini's EPS talk

Re(C₀)
Im(C_K)
Im(C₀)
Ca₁
UTfit

10¹
C1
C2
C3
C4
C4
C5

 $\Lambda_{
m EW}$

 Λ_{UV}

no breaking of the $U(2)^n$ flavour symmetry at low energies

Partonic vs Hadronic

Fundamental challenge to match partonic and hadronic descriptions

What's the problem for BSM?

What's the problem for BSM?

What's the problem for BSM?

How to satisfy all the constraints at the same time?

Open problems in hadronic physics

What are the open themes in hadronic physics?

1. $B \to D^*$ form factors

2. Inclusive vs. Exclusive determination of V_{cb}

3. Charm-loop effects in $B \to K^* \ell^+ \ell^-$

How can we tame the non-perturbative monsters

$$\langle H_c|J_\mu|H_b\rangle = \sum_i S^i_\mu \mathcal{F}_i$$

- Lattice QCD
- · QCD SR, LCSR

- HQET (exploit $m_{b,c} o \infty$ limit) + Data driven fits
- Dispersive analysis
 - ⇒ see talks by L. Vittorio, T. Kaneko, M.Prim, B. Colquhoun, J. Harrison

How can we tame the non-perturbative monsters

- Lattice QCD
- QCD SR, LCSR
- HQET (exploit $m_{b,c} \to \infty$ limit) + Data driven fits
- Dispersive analysis
 - ⇒ see talks by L. Vittorio, T. Kaneko, M.Prim, B. Colquhoun, J. Harrison

Lattice calculations at $q^2 \neq q_{\text{max}}^2$

- FNAL/MILC '21
- HQE@ $1/m_c^2$
- Exp data (BGL)
- JLQCD '23
- HPQCD '23

- Tensions between different lattice determinations, experimental data and non-lattice theory determination
- No consensus yet, ongoing checks
- New Belle analysis available

 \Rightarrow See talk by M. Prim

Pheno status

- Without LQCD prediction, the current combined tension is $\sim 3.3\,\sigma$
- Concerning R_D the situation is much stable because different LQCD collaborations agree with each other and experimental data

Inclusive vs. Exclusive determination of V_{cb}

Major impact for

- Test of unitarity for the CKM
- $\epsilon_K \sim |V_{cb}|^4$
- $\mathcal{B}(B_s \to \mu\mu) \sim |V_{cb}|^2$
- $\mathcal{B}(B \to K \nu \bar{\nu}) \sim |V_{cb}|^2$

Inclusive vs. Exclusive determination of V_{cb}

The inclusive determination is solid

 The traditional determination using data for the hadronic mass moments and lepton energy moments yields stable results up to $\mathcal{O}(\alpha_s^3)$ corrections in the width [2011.13654]

MB. Capdevila, Gambino, '21

• New determination using q^2 moments yields very compatible results [2205.10274]

 V_{cb}

 Only caveat: QED corrections for charged current decays are enhanced by the Coulomb factor (for neutral B mesons)

MB. Bigi. Gambino. Haisch. Piccione '23

⇒ The impact has to be checked for each measurement

The exclusive determination depends on the dataset and hadronic form factor used

- Work in progress on the theory side
- New experimental data are available and have to be still scrutinised

⇒ see talks by K.Vos, D. Moreno

$$\mathcal{H}_{\mathsf{eff}} = -4 rac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[-\mathcal{C}_1 \mathcal{O}_1 - \mathcal{C}_2 \mathcal{O}_2 + \mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_9 \mathcal{O}_9 + \mathcal{C}_{10} \mathcal{O}_{10}
ight]$$

$$\mathcal{O}_{1} = (\bar{s}\gamma^{\mu}P_{L}b) (\bar{c}\gamma_{\mu}c) \qquad \qquad \mathcal{O}_{2} = (\bar{s}\gamma^{\mu}T^{a}P_{L}b) (\bar{c}\gamma_{\mu}T^{a}c)$$

$$\mathcal{O}_{9} = (\bar{s}\gamma^{\mu}P_{L}b) (\bar{\ell}\gamma_{\mu}\ell) \qquad \qquad \mathcal{O}_{10} = (\bar{s}\gamma^{\mu}P_{L}b) (\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

$$\mathcal{O}_{7} = (\bar{s}\sigma^{\mu\nu}P_{R}b) F_{\mu\nu}$$

lepton flavour universal

How do we parametrise these long-distance effects?

- Conformal transformation $q^2\mapsto z(q^2)$, with |z|<1
- $C_9^{
 m LD} \propto lpha_n z^n$ [1707.07305]
- Dispersive analysis allow to determine the truncation order of the series
- Effects are small

- Conformal transformation $q^2\mapsto z(q^2)$, with |z|<1
- $C_9^{
 m LD} \propto \alpha_n z^n$ [1707.07305]
- Dispersive analysis allow to determine the truncation order of the series
- Effects are small

Is this all?

- Conformal transformation $q^2\mapsto z(q^2)$, with |z|<1
- $C_9^{
 m LD} \propto lpha_n z^n$ [1707.07305]
- Dispersive analysis allow to determine the truncation order of the series
- Effects are small

Is this all?

- Are these contributions included?
- Are they large that they can reconcile the tension in $B \to K^* \mu \mu$?

Charm loop effects in $B \to K^{(*)} \mu^+ \mu^-$

MB, Isidori, Maechler, Tinari, to appear

- Can we extract some hints of the shape of $C_9^{\rm LD}(q^2)$ from data?
 - ⇒ NP yields a **constant** effect in the whole kinematic region
- Is the current sensitivity enough to claim anything?

$$C_9^{\text{eff}} = C_9 + \sum_V \eta_V^{\lambda} e^{i\delta_V^{\lambda}} \frac{q^2}{(m_V^2)} \frac{m_V \Gamma_V}{m_V^2 - q^2 - i m_V \Gamma_V}$$

No evidence for q^2 dependence

 \Rightarrow see talk by A. Mauri

A glance into BSM physics

Status of high energy bounds

Flavour Non-Universal New Physics Dvali. Shifman. '00

Panico, Pomarol, '16 MB, Cornella, Fuentes-Martin, Isidori '17 Allwicher, Isidori, Thomsen '20 Barbieri, Cornella, Isidori, '21 Davighi, Isidori '21

Basic idea:

- 1st and 2nd have small masses and small couplings to NP because they are generated by dynamics at a heavier scale
- 3rd generation is linked to dynamics at lower scales and has stronger couplings

Flavour deconstruction:

fermion families interact with different gauge groups and flavour hierarchies emerge as accidental symmetries

Flavour Non-Universal New Physics Dvali, Shifman, '00

Panico, Pomarol, '16 MB, Cornella, Fuentes-Martin, Isidori '17 Allwicher, Isidori, Thomsen '20 Barbieri, Cornella, Isidori, '21 Davighi, Isidori '21

What do we expect in the SMEFT?

Using $SU(2)_L$ invariance, we have

The present hints align well together, but it is too soon to claim victory...

Conclusions

- Flavour physics is a powerful test for new physics living at different energy scales
- At the current status, we haven't observed any clear sign of new physics
- No clear sign of new physics can hint to a peculiar structure for the flavour structure of NP and to flavour deconstruction
 - ⇒ Theoretical and Experimental efforts will shed light on puzzles in hadronic predictions, aiming to a deeper understanding of the SM
 - ⇒ From the phenomenological point of view, a few hints point to a strong link between new physics and the third generations, with possible new physics reach close to the current searches

Appendix

$B \to D^{(*)}$ form factors

- 7 (SM) + 3 (NP) form factors
- Lattice computation for $q^2 \neq q_{\sf max}^2$ only for $B \to D$
- · Calculation usually give only a few points
- q² dependence must be inferred
- Conformal variable z

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

- $t_+ = (m_B + m_{D^{(*)}})^2$ pair production threshold
- $t_0 < t_+$ free parameter that can be used to minimise $|z_{\sf max}|$
- $|z| \ll 1$, in the $B \to D$ case |z| < 0.06

The HQE parametrisation 1

• Expansion of QCD Lagrangian in $1/m_{b,c} + \alpha_s$ corrections

[Caprini, Lellouch, Neubert, '97]

• In the limit $m_{b,c} \to \infty$: all $B \to D^{(*)}$ form factors are given by a single Isgur-Wise function

$$F_i \sim \xi$$

• at higher orders the form factors are still related ⇒ reduction of free parameters

$$F_i \sim \left(1 + \frac{\alpha_s}{\pi}\right)\xi + \frac{\Lambda_{\rm QCD}}{2m_b}\xi_{\rm SL}^i + \frac{\Lambda_{\rm QCD}}{2m_c}\xi_{\rm SL}^i$$

- at this order 1 leading and 3 subleading functions enter
- ullet ξ^i are not predicted by HQE, they have to be determined using some other information

The HQE parametrisation 2

- Important point in the HQE expansion: $q^2=q_{\max}^2$
- At this point Luke's Theorem applies: the subleading corrections vanish for some form factors
- The leading Isgur-Wise function is normalised: $\xi(q^2=q_{\rm max}^2)=1$
- Problem: contradiction with lattice data!
- ullet $1/m_c^2$ corrections have to be systematically included

[Jung, Straub, '18, MB, M.Jung, D.van Dyk, '19]

• well motivated also since $\alpha_s/\pi \sim 1/m_b \sim 1/m_c^2$

The HQE results

[MB, Jung, van Dyk, EPJC 80 (2020), MB, Gubernari, Jung, van Dyk, EPJC 80 (2020)]

Data points:

 theory inputs only (Lattice QCD, QCD Sum Rules, Light-cone Sum Rules, Dispersive Bounds)

• Expansion in z up to order

Comparison with kinematical distributions

good agreement with kinematical distributions

Fit stability

- BGL fit to Belle 2017 and 2018 data (yellow)
- HQE fit 2/1/0 (red)
- HQE fit 3/2/1 (blue)

- · compatibily of HQE fit with data driven one
- 2/1/0 underestimates massively uncertainties

3/2/1 is our nominal fit

Phenomenological results

• V_{cb} extraction

$$V_{cb}^{\text{average}} = (41.1 \pm 0.5) \times 10^{-3}$$

compatibility of 1.8σ between inclusive and exclusive

Universality ratios

$$R_{D^*} = 0.2472 \pm 0.0050$$
 $R_{D^*_*} = 0.2472 \pm 0.0050$

towards the combined 4σ discrepancy

- We observe no $SU(3)_F$ breaking
- Good compatibility with LHCb $\bar{B}_s o D_s^{(*)}$ analysis in 2001.03225

Inclusive vs Exclusive determination of V_{ch}

Inclusive determination of V_{cb} :

$$V_{cb}^{\mathsf{incl}} = (42.00 \pm 0.65) \times 10^{-3}$$

[P. Gambino, C. Schwanda, 1307.4551
 A. Alberti, P. Gambino, K. J. Healey, S. Nandi, 1411.6560
 P. Gambino, K. J. Healey, S. Turczyk, 1606.06174

Exclusive determination of V_{cb} : depends on the data set used and the assumptions for the hadronic parameters

- $B \to D \ell \bar{\nu}$: $V_{cb}^{\rm excl}|_{BD} = (40.49 \pm 0.97) \times 10^{-3}$ [P.Gambino, D.Bigi, 1606.08030, $+ \cdots$]
- $B \to D^* \ell \bar{\nu}$: not a general consensus yet, but systematically lower $V_c^{\sf excl}|_{BD}$ [P.Gambino, M.Jung, S.Schacht, '19
 F.Bernlochner, Z. Ligeti, M. Papucci, D. Robinson, '17 + \cdots]
- $B_s o D_s^{(*)} \ell \bar{\nu}$: new extraction by LHCb \Rightarrow still large uncertainties [2001.03225]

No evidence so far that this tension is due to NP

[M. Jung, D. Straub, 1801.01112]

HQET in a nutshell

- In HQET it is convenient to work with velocities instead of momenta
- Instead of q^2 we use the dimensionless variable $w=v_B\cdot v_{D^*}$
- When the B(b) decays such that the $D^*(c)$ is at rest in the B(b) frame

$$v_B = v_{D^*} \qquad \Rightarrow \qquad w = 1$$

- The brown muck doesn't realise that anything changed
- At zero recoil, the leading IW function is <u>normalized</u>

$$\xi(w=1)=1$$

[Jung, Straub 2018]

• If we allow LFUV between μ and electrons

$$\tilde{V}_{cb}^{\ell} = V_{cb}(1 + C_{V_L}^{\ell})$$

• Fitting data from Babar and Belle

$$\frac{\tilde{V}^{e}_{cb}}{\tilde{V}^{\mu}_{cb}} = 1.011 \pm 0.012$$

$$\begin{split} &\frac{1}{2}(\tilde{V}^e_{cb}+\tilde{V}^\mu_{cb})=(3.87\pm0.09)\%\\ &\frac{1}{2}(\tilde{V}^e_{cb}-\tilde{V}^\mu_{cb})=(0.022\pm0.023)\% \end{split}$$

BGL vs CLN

 Both BGL and CLN parametrisation of form factors rely on using unitarity arguments.

[Boyd, Grinstein, Lebed, '95 Caprini, Neubert, Lellouch, '98]

- CLN relies on HQET.
- Unfolded distributions from Belle allowed to repeat an independent fit.

BGL vs CLN parametrisations

CLN

[Caprini, Lellouch, Neubert, '97]

- Expansion of FFs using HQET
- $1/m_{b,c}$ corrections included
- Expansion of leading IW function up to 2nd order in (w-1)

BGL

[Boyd, Grinstein, Lebed, '95]

- Based on analyticity of the form factors
- ullet Expansion of FFs using the conformal variable z
- Large number of free parameters

Results: unitary bounds

Unitarity Bounds

$$= i \int d^4x \, e^{iqx} \langle 0|T \left\{ j_{\mu}(x), j_{\nu}^{\dagger}(0) \right\} |0\rangle = (g_{\mu\nu} - q_{\mu}q_{\nu}) \Pi(q^2)$$

- If $q^2 \ll m_b^2$ we can calculate $\Pi(q^2)$ via perturbative techniques $\Rightarrow \chi(0)$
- ullet Dispersion relations link Im $\left(\Pi(q^2)\right)$ to sum over matrix elements

$$\sum_{i} \left| F_i(0) \right|^2 < \chi(0)$$

[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over <u>all</u> possible states hadronic decays mediated by a current $\bar{c}\Gamma_{\mu}b$
 - The unitarity bounds are more effective the most states are included in the sum
 - The unitarity bounds introduce correlations between FFs of different decays
 - $B_s \to D_s^{(*)}$ decays are expected to be of the same order of $B_{u,d} \to D_{u,d}^{(*)}$ decays due to $SU(3)_F$ simmetry

$$\Gamma = \frac{1}{m_B} \text{Im} \int d^4x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^\dagger(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\sum_{n,i} \frac{1}{m_h^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\sum_{n,i} \frac{1}{m_b^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)|\mathcal{O}_{n+3,i}|B(p)\rangle$ are non perturbative
 - ⇒ They need to be determined with non-perturbative methods, e.g. Lattice QCD
 - ⇒ They can be extracted from data
 - \Rightarrow With large n, large number of operators

$$\Gamma = \frac{1}{m_B} \text{Im} \int d^4x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\sum_{n,i} \frac{1}{m_b^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)|\mathcal{O}_{n+3,i}|B(p)\rangle$ are non perturbative
 - ⇒ They need to be determined with non-perturbative methods, e.g. Lattice QCD
 - ⇒ They can be extracted from data
 - \Rightarrow With large n, large number of operators

$$\Gamma_{sl} = \Gamma_0 f(\rho) \left[1 + a_1 \left(\frac{\alpha_s}{\pi} \right) + a_2 \left(\frac{\alpha_s}{\pi} \right)^2 + a_3 \left(\frac{\alpha_s}{\pi} \right)^3 - \left(\frac{1}{2} - p_1 \left(\frac{\alpha_s}{\pi} \right) \right) \frac{\mu_R^2}{m_b^2} + \left(g_0 + g_1 \left(\frac{\alpha_s}{\pi} \right) \right) \frac{\mu_G^2(m_b)}{m_b^2} + d_0 \frac{\rho_D^3}{m_b^3} - g_0 \frac{\rho_{LS}^3}{m_b^3} + \dots \right]$$

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}(i\vec{D})^{2}b_{v}|B\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}b_{v}|B\rangle_{\mu}$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

$$\Gamma_{sl} = \Gamma_0 f(\rho) \left[1 + a_1 \left(\frac{\alpha_s}{\pi} \right) + a_2 \left(\frac{\alpha_s}{\pi} \right)^2 + a_3 \left(\frac{\alpha_s}{\pi} \right)^3 - \left(\frac{1}{2} - p_1 \left(\frac{\alpha_s}{\pi} \right) \right) \frac{\mu_R^2}{m_b^2} + \left(g_0 + g_1 \left(\frac{\alpha_s}{\pi} \right) \right) \frac{\mu_G^2(m_b)}{m_b^2} + d_0 \frac{\rho_D^3}{m_b^3} - g_0 \frac{\rho_{LS}^3}{m_b^3} + \dots \right]$$

$$\mu_{\pi}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}(i\vec{D})^{2}b_{v}|B\rangle_{\mu} \qquad \mu_{G}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}b_{v}|B\rangle_{\mu}$$

- Coefficients of the expansions are known
- Ellipses stands for higher orders

How do we constrain the OPE parameters?

- Lepton energy and hadronic invariant mass distributions can be used to extract non perturbative information
- Moments of the kinematic distributions

$$\langle E_{\ell}^{n} \rangle = \frac{\int_{E_{\ell} > E_{\ell, \text{cut}}} dE_{\ell} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}}}{\Gamma_{E_{\ell} > E_{\ell, \text{cut}}}}$$

$$R^{*} = \frac{\int_{E_{\ell} > E_{\ell, \text{cut}}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}{\int dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}$$

- · Similar definition for hadronic mass moments
- The moments give access to the distribution, but not to the normalisation
- They admit an HQE as the rate
 - \Rightarrow No $\mathcal{O}(\alpha_s^3)$ terms are known yet

Inclusive V_{cb} from q^2 moments

An alternative for the inclusive determination

• q^2 moments

$$R^* = \frac{\int_{q^2 > q_{\text{cut}}^2} dq^2 \frac{d\Gamma}{dq^2}}{\int_0 dq^2 \frac{d\Gamma}{dq^2}} \qquad \langle (q^2)^n \rangle = \frac{\int_{q^2 > q_{\text{cut}}^2} dq^2 (q^2)^n \frac{d\Gamma}{dq^2}}{\int_0 dq^2 \frac{d\Gamma}{dq^2}}$$

- Exploits HQE to reduce numbers of higher dimensional operators [Fael, Mannel, Vos., '18]
- Preliminary result:

$$|V_{cb}| = (41.69 \pm 0.63) \times 10^{-3}$$

What's the issue with the previous determination?

- ullet The q^2 moments require a measurement of the branching ratio with a cut in q^2 which is not available yet
- By extrapolating from the current available measurements, the branching ratio is lower then what used
- If the same branching ratios is used, the two methods give the same result

The results for inclusive V_{cb} are stable

SMEFT with Flavour 1

[Allwicher, Cornella, Isidori, Stefanek, in preparation]

SMEFT with Flavour 2

[Allwicher, Cornella, Isidori, Stefanek, in preparation]

C_9 from $B o K^{(*)} \mu^+ \mu^-$ data

