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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.
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• SMEFT at  
 New sources of flavour violation
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• Is this the end of my talk?

• No! Why should BSM be flavour-anarchic?  
After all, 
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 :ℒSM

 sans Yukawa:ℒSM U(3)q × U(3)U × U(3)D × U(3)l × U(3)E

U(1)B × U(1)e × U(1)μ × U(1)τ

 Accidental symmetriesℒSM :

However:

• Peculiar observed values of   Approximate flavour symmetries  
      

Yu,d,e ⟹

−ℒYuk = q̄V† ̂YuH̃u + q̄ ̂YdHd + l̄ ̂YeHe
[  transformation and a singular value decomposition theorem]U(3)5

[Mass hierarchy & CKM alignment] [suppression in FCNC, EDM, etc]

Exact (classical) accidental symmetries

qi, ℓi, ui, di, ei i = 1,2,3

Admir Greljo | Flavour at high-pT



FCNCNP scale

•A viable BSM at the TeV-scale should no excessively 
violate accidental symmetries of the SM

•Key ingredient in model building:  
Flavour symmetry and its breaking pattern

BSM@TeV

5

*e.g. EW hierarchy

Admir Greljo | Flavour at high-pT
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• No new sources of flavour breaking

(q̄q)(ūu)

O(�) : (q̄aq3)(�u)
a
b(ū3u

b) , H.c. , O(�Vq) : (q̄aV
†
q q)(�u)

a
b(ū3u

b) , H.c. .
(2.54)

(q̄q)(d̄d)

O(⇤d⌃d) : (q̄aq3)(⌃d)
a

j(d̄⇤dd
j) , H.c. . (2.55)

(q̄u)(q̄d)

O(⌃d) : (q̄au3)(⌃d)
a

j(q̄3d
j) , O(Vq⌃d) : (q̄au3)(⌃d)

a

j(q̄Vqd
j) ,

O(�⇤d) : (q̄3u
a)(�u)

b
a(q̄b⇤

†
d
d) .

(2.56)

2.4 MFVQ symmetry

Minimal flavor violation assumes that the only spurions of the GQ = U(3)q ⇥U(3)u ⇥U(3)d
symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ⇠ (3,1,1), u ⇠ (1,3,1), d ⇠ (1,1,3) (2.57)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ⇠ (3, 3̄,1), Yd ⇠ (3,1, 3̄). (2.58)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).

– 18 –
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• The MFV brings the cutoff to the TeV scale!

Minimal Flavour Violation
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

MFV

Admir Greljo | Flavour at high-pT

D’Ambrosio et al; hep-ph/0207036 

https://arxiv.org/abs/hep-ph/0207036
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Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension
six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for
EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illus-
trate the reach of direct flavour-blind searches and EW precision measurements. The operator
coefficients are taken to be either ⇠ 1 (plain coloured columns) or suppressed by MFV factors
(hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects,
including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

compared with the reach of direct high-energy searches and EW precision tests (in grey), il-
lustrated by using flavour-blind operators that have the optimal reach [258]: the gluon-Higgs
operator and the oblique parameters for EW precision tests, respectively. The shown effective
energy reach of flavour experiments do have several caveats. First of all, in many realistic the-
ories either the coupling constants are smaller than unity and/or the symmetries suppress the
sizes of the coefficients. This effect is illustrated by including in the quark sector the present
bounds in tree level NP with Minimal Flavour Violation (MFV) pattern of couplings (hatch filled
areas) [259–262]. Furthermore, there could be cancellations among several higher-dimension
operators. In addition, for theories in which the new physics contributes as an insertion inside a
one-loop diagram mediated by SM particles, all the shown scales should be further reduced by
extra GIM-mass suppressions and/or a factor a/4p ⇠ 10�3 (where a denotes the generic gauge
structure constants).

Finally and importantly, the new physics scale behind the flavour paradigm may differ
from the electroweak new physics scale. Despite these caveats, Fig. 5.1 does illustrate the
unique power of flavour physics to probe NP. The next generation of precision particle physics
experiments will probe significantly higher effective NP scales, as discussed in more detail
below.

MFV

D’Ambrosio et al; hep-ph/0207036 

U(2)^3

Barbieri et al; 1105.2296

V† ∝ (Vtd, Vts)Δ ≪ V ≪ 1

• Approximate symmetry of the SM
• Small spurions  consistent power counting
• Some protection against FCNC

⟹

similar manner, thus operators can always be dressed with higher powers of Y †
uYu. However,

not all of these are independent. In fact three of these are enough to span the space, and
higher powers can be absorbed into the coe�cients of the operators with lower powers: a
finite set is su�cient to capture all physics. A proper organizing principle exists when the
spurions are small (e.g., if Yu always comes with a small parameter ✏u ⌧ 1), and the MFV
operators can be organized by powers of the spurions. This naive expansion in powers of
Yu,d is not necessarily possible, since yt ⇠ 1, and in 2HDM type models even yb can be
order 1. The authors of Ref. [121] were able to show that non-linearly realized MFV, where
a power expansion is impossible, can be e↵ectively captured as a special case of the later,
much acclaimed U(2)3 flavor symmetry [120].

Here we consider a spectrum of viable flavor symmetries:

i) G = U(2)3 decouples the third generation quarks entirely, yet it gives a decent
protection against FCNCs.

ii) G = U(2)3 ⇥U(1)b decouples only the third generation of down-quarks and keeps yb,
a spurion of U(1)b, perturbatively small.

iii) G = U(2)2 ⇥U(3) for when there is no suppression of yt ' 1 in the SMEFT operators.
The enhanced symmetry allows for a spurion expansion of all but the top quark.

iv) G = U(3)3 linearly realized MFV, provides strong constraints on NP, and e↵ectively
protects against NP contributions to rare SM processes.

In this section, we explore these 4 di↵erent flavor structures for the quark sector. In
each case, we will assume that a perturbative expansion in spurion insertions is possible.
For each symmetry, we provide a parametrization of the spurions, list all flavor contractions
that can occur up to dimension 6 in the SMEFT, and finally provide a counting of the
quark operators at dimension 6.

2.1 U(2)3 symmetry

We assume that the NP posses a symmetry G = U(2)q ⇥U(2)u ⇥U(2)d ⇢ GQ, under which
the SM quarks decompose as

q =

"
q
a
⇠ (2,1,1)

q3 ⇠ (1,1,1)

#
, u =

"
u
a
⇠ (1,2,1)

u3 ⇠ (1,1,1)

#
, d =

"
d
a
⇠ (1,1,2)

d3 ⇠ (1,1,1)

#
. (2.2)

The minimal set of spurions needed to reproduce the SM masses and CKM matrix is

Vq ⇠ (2,1,1) , �u ⇠ (2,2,1) , �d ⇠ (2,1,2) . (2.3)

These spurions generally allow for a slew of Yukawa operators, which contributes to the
Yukawa coupling matrices as

Yu,d =

"
a
u,d

1 �u,d + a
u,d

2 �u�
†
u�u,d + . . . b

u,d

1 Vq + b
u,d

2 �u�
†
uVq + . . .

c
u,d

1 V
†
q �u,d + . . . d

u,d

1 + d
u,d

2 V
†
q Vq + . . .

#
(2.4)

for O(1) parameters au,dn , . . . d
u,d
n , parametrizing all covariant combinations of the spurions

at each entry in the coupling matrix.
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• No new sources of flavour breaking
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Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).
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(q̄q)(ūu)

O(�) : (q̄aq3)(�u)
a
b(ū3u

b) , H.c. , O(�Vq) : (q̄aV
†
q q)(�u)

a
b(ū3u

b) , H.c. .
(2.54)

(q̄q)(d̄d)

O(⇤d⌃d) : (q̄aq3)(⌃d)
a

j(d̄⇤dd
j) , H.c. . (2.55)

(q̄u)(q̄d)

O(⌃d) : (q̄au3)(⌃d)
a

j(q̄3d
j) , O(Vq⌃d) : (q̄au3)(⌃d)

a

j(q̄Vqd
j) ,

O(�⇤d) : (q̄3u
a)(�u)

b
a(q̄b⇤

†
d
d) .

(2.56)

2.4 MFVQ symmetry

Minimal flavor violation assumes that the only spurions of the GQ = U(3)q ⇥U(3)u ⇥U(3)d
symmetry in the quark sector are the SM Yukawa couplings. The quarks transform as

q ⇠ (3,1,1), u ⇠ (1,3,1), d ⇠ (1,1,3) (2.57)

under GQ. As the Yukawa couplings are the sources of the symmetry breaking, they are
promoted into spurions with the transformations assigned as

Yu ⇠ (3, 3̄,1), Yd ⇠ (3,1, 3̄). (2.58)

Fixing the parameters of the SM, i.e., the values of the Yu,d,e spurions, breaks GQ.
With no degenerate or vanishing eigenvalues nor any accidental alignment of Yu and Yd, Yu
can be parametrized exclusively with the diagonal matrix of its singular values, Ŷu:

Yu �! Ŷu : U(3)q ⇥U(3)u �! U(1)3q+u. (2.59)

The remaining quark sector symmetry can then be used to partially diagonalize Yd, writing

Yd �! V Ŷd : U(1)3q+u ⇥U(3)d �! U(1)B. (2.60)

Here V is a special unitary matrix with 3 rotation angles but only 1 phase, as the others
have been successfully factored out: V is nothing but the illustrious CKM matrix. Only the
vectorial baryon number symmetry U(1)B remains unbroken after the inclusion of the quark
Yukawa couplings. Only 9 real parameters and 1 phase are physical; a total of 26 unphysical
parameters have been removed. The remnant flavor symmetry of the quark sector is U(1)B ,
which is consistent with 26 broken generators. No additional phases can be removed from
the baryon number–conserving SMEFT operators with the remnant symmetry.

The spurion counting of the pure quark operators is presented in Table 6, while the
decompositions of the bilinear and quartic structures are listed in Eqs. (2.61–2.66) and
Eqs. (2.67–2.72).
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• The MFV brings the cutoff to the TeV scale!

Minimal Flavour Violation

Admir Greljo | Flavour at high-pT

https://arxiv.org/abs/hep-ph/0207036
https://arxiv.org/abs/1105.2296
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BSM1
BSM2

BSM3

……

UV

IRSM EFT

[ultraviolet]

[infrared]
Pragmatic, bottom-up, …

1. No clear/preferred model

2. Short-distance direction still the most compelling (to many of us)

3. Experiments headed towards the precision/luminosity era

Why?

SMEFT

Admir Greljo | Flavour at high-pT
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• SM fields & Symmetries (Gauge + Poincaré)
• Scale separation 
• Higher-dimensional operators encode short-distance physics:

ΛQ ≫ vEW

ℒ = ℒSM + ∑
Q

CQ

Λ[Q]−4
Q

Q

BSM1
BSM2

BSM3

……

UV

IRSM EFT

[ultraviolet]

[infrared]
Pragmatic, bottom-up, …

What?

Admir Greljo | Flavour at high-pT

SMEFT



SMEFT is challenging!

10

• Price for generality: Large number of independent parameters!

• 2499 at  ( )
• Why? (Partially due to) FLAVOUR

• If there was a single generation => 59

dim[𝒪] = 6 ΔB = ΔL = 0

Grzadkowski et al, 1008.4884

i = 1,2,3

Admir Greljo | Flavour at high-pT

https://arxiv.org/abs/1008.4884
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Adding Flavour to the SMEFT

• Charting the space of BSM by flavour symmetries

• Formulate several competing flavour hypothesis 
for  SMEFT ( )

• Systematic approach:  
(smaller symmetry  more terms)

• 28 different case

• Minimal set of flavour-breaking spurions needed 
to reproduce masses and mixings

• Construct explicit (ready-for-use) operator bases 
order by order in the spurion expansion starting 
from the Warsaw basis

dim 6 ΔB = 0

U(3) ⊃ U(2) ⊃ U(1)
⟹

AG, Thomsen, Palavric; 2203.09561

Admir Greljo | Flavour at high-pT

See also: Faroughy et al; 2005.05366

https://arxiv.org/abs/2203.09561
https://arxiv.org/abs/2005.05366


U(2)q ⇥U(2)u ⇥U(2)d O(1) O(V ) O(V 2) O(V 3) O(�) O(�V )

 
2
H

3 QuH 1 1 1 1 1 1 1 1

QdH 1 1 1 1 1 1 1 1

 
2
XH

Qu(G,W,B) 3 3 3 3 3 3 3 3

Qd(G,W,B) 3 3 3 3 3 3 3 3

 
2
H

2
D

Q
(1,3)
Hq

4 2 2 2

QHu,QHd 4 2 2

QHud 1 1 2 2

(LL)(LL) Q
(1,3)
qq 10 6 6 10 2 2 2

(RR)(RR)
Quu,Qdd 10 6 6

Q
(1,8)
ud

8 8 8

(LL)(RR) Q
(1,8)
qu ,Q(1,8)

qd
16 8 8 8 4 4 12 12

(LR)(LR) Q
(1,8)
quqd

2 2 4 4 2 2 8 8 12 12

Total 63 11 28 28 22 4 2 2 20 20 50 50

Table 2. Counting of the pure quark SMEFT operators (see Appendix A) assuming U(2)q⇥U(2)u⇥
U(2)d symmetry in the quark sector. The counting is performed taking up to three insertions of
Vq spurion, one insertion of �u,d and one insertion of the �u,dVq spurion product. Left (right)
numerical entry in each column gives the number of CP even (odd) coe�cients at the given order in
spurion counting.

where we adopt the notation su, cu for sine and cosine of the same angle, and

�d �!

"
cd �sde

i↵

sde
�i↵

cd

#"
�d 0

0 �
0
d

#
: U(2)d �! ;. (2.10)

The complete breaking of G ! ; by the spurions makes it possible to remove 12 unphysical
parameters from the spurions, reducing the naive 10 complex parameters down to a total of
5 real positive parameters, 2 mixing angles, and a phase. At dimension 4, together with yb

and yt these give the quark masses and the CKM mixing matrix. Also, given the breaking
pattern at dimension 4, means that all coe�cients of the baryon number–conserving SMEFT
operators are physical.6

The spurion counting of the pure quark SMEFT operators assuming U(2)3 (or SU(2)3)
symmetry in the quark sector is presented in Table 2 (3). The decompositions of the
bilinear structures are presented in Eqs. (2.12–2.17) and of the unique quartic structures in
Eqs. (2.18–2.23).

Decomposition of bilinear structures

In this section, we present the construction of bilinear structures invariant under the U(2)3

flavor symmetry. Let us start with the O(1) structures. Since q, u and d all decompose
as 2q,u,d � 1, respectively, under U(2)3 group, the O(1) bilinears can be formed either

6
Some of these coe�cients are unphysical when using the redundant spurion parametrization of Ref. [1].

With this is mind, the parametrization in Ref. [1] can still be useful in model building.

– 8 –

Example:  quarkU(2)3

12

AG, Thomsen, Palavric; 2203.09561

Admir Greljo | Flavour at high-pT

https://github.com/aethomsen/SMEFTflavor
See also: Faroughy et al; 2005.05366

https://arxiv.org/abs/2203.09561
https://github.com/aethomsen/SMEFTflavor
https://arxiv.org/abs/2005.05366
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AG, Thomsen, Palavric; 2203.09561

Summary

• Flavour-symmetric operator bases (no spurion insertions)
• Systematically from MFV towards anarchy: U(3) ⊃ U(2) ⊃ U(1)

Top/Higgs/EW

Flavour
• Nontrivial Interplay 

Admir Greljo | Flavour at high-pT

https://arxiv.org/abs/2203.09561
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AG, Thomsen, Palavric; 2203.09561

Summary

• Flavour-symmetric operator bases (no spurion insertions)
• Systematically from MFV towards anarchy: U(3) ⊃ U(2) ⊃ U(1)

Top/Higgs/EW

Flavour
• Nontrivial Interplay 

Admir Greljo | Flavour at high-pT

Next slide

https://arxiv.org/abs/2203.09561
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 flavour-symmetric basisU(3)5

• Explicit operator basis: 41 CP even, 6 CP odd

Admir Greljo | Flavour at high-pT
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 flavour-symmetric basisU(3)5

Q: Which UV models produce this basis at the tree level? 
AG, Palavric; 2305.08898

Admir Greljo | Flavour at high-pT

https://arxiv.org/abs/2305.08898
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 flavour-symmetric basisU(3)5

AG, Palavric; 2305.08898

Admir Greljo | Flavour at high-pT

Leading (flavour-blind) directions

• Assume weakly coupled, perturbative UV with new spin-0, 1/2, 1 fields

• New fields have  and leading (renormalisable) interactions

• UV/IR dictionary for SMEFT (de Blas et al, 1711.10391)

• Impose  flavour symmetry in the UV (AG, Palavric; 2305.08898)

MX ≫ vEW

U(3)5

- New fields are irreps of the flavour group: 1, 3, 6, 8

- Parameter reduction: Flavour tensors fixed by group theory

Q: Which UV models produce this basis at the tree level? 

https://arxiv.org/abs/2305.08898
https://arxiv.org/abs/1711.10391
https://arxiv.org/abs/2305.08898
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Leading directions
AG, Palavric; 2305.08898

Admir Greljo | Flavour at high-pT

• In most cases, a single flavour 
irrep integrates to a single 
Hermitian operator with a 
definite sign (a leading direction)

• These define a UV motivated 
operator basis suitable for 1D fits

• The case for Top/Higgs/EW fits  
(Automatic protection against FCNC)

https://arxiv.org/abs/2305.08898
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Leading directions
AG, Palavric; 2305.08898

Admir Greljo | Flavour at high-pT

*couplings set to unity

• In most cases, a single flavour 
irrep integrates to a single 
Hermitian operator with a 
definite sign (a leading direction)

• These define a UV motivated 
operator basis suitable for 1D fits

• The case for Top/Higgs/EW fits  
(Automatic protection against FCNC)

Spin-0
Spin-1
Spin-1/2

Comprehensive summary 
of indirect searches for 

flavour-blind BSM mediators

https://arxiv.org/abs/2305.08898


Admir Greljo | Flavour at high-pT

Global SMEFT fits

20

See talk by Gauthier Durieux, PhysTeV Les Houches

• Progress in global SMEFT fits!

SMEFiT, 2105.00006

Fitmaker, 2012.02779

• Flavour assumptions?

https://arxiv.org/abs/2105.00006
https://arxiv.org/abs/2012.02779


Example: High-mass Drell-Yan
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Figure 5. Sample Feynman diagrams for the partonic processes relevant at hadron colliders. For
the scalar leptoquark S3 one should exchange q $ q̄.

CL limits that define the targeted parameter space for all considered models to be explored
at future colliders.

3.1 Di-muon: pp ! µ
+
µ
�

Following Ref. [15], a short-distance new physics above the electroweak scale contributing to
the (semi)leptonic B-meson decays, generically predicts a correlated effect in the Drell–Yan
(DY) process (pp ! µ

+
µ
�). This applies to all tree-level mediators considered in this work.

In particular, a Z
0 would show up as an s-channel resonance, while a leptoquark would lead

to a non-resonant effect via a t-channel contribution, see Fig. 5 for the respective Feynman
diagrams. Should the mass of these mediators be above the accessible di-muon invariant
mass spectrum, their impact would be described by a four-fermion quark-lepton interaction
considered in Section 4. Such interactions modify the high-invariant mass tails of the DY
process [15, 66, 68–92]. After specifying the quark flavour structure for a given operator,
the sensitivity in the tails can be compared to those from the low-energy flavour physics.

The production cross section depends crucially on the quark flavours involved in the
initial state. For example, quark-flavour universal Z 0 models with B/Lµ ⇠ O(1) and MFV
in the quark sector are already very well tested by current DY data at LHC. The dominant
production channel in these models is due to the valance quarks, and it is enhanced because
of their large PDFs. In this work, we only consider models in which the dominant couplings
are with the heavy flavours and which can evade LHC searches thanks to the suppression
from the sea quark PDFs. In Section 5.1 we investigate the U(1)B3�L2 gauge extension of
the SM where the Z

0 primarily interacts with the third generation of quarks and second
generation of leptons. The dominant DY channel in this model is the bb̄ fusion. In Section 6,
we derive the DY limits on the leptoquark models. While the main results are summarised

– 10 –

*eg, a heavy LQ

AG, Marzocca; 1704.09015
Example:  vs Drell-Yanb → sμμ

Admir Greljo | Flavour at high-pT

…

https://arxiv.org/abs/1704.09015


Drell-Yan in the SMEFT

22

• Flavio implementation of the high-mass Drell-Yan data:

4F SMEFT operators with arbitrary flavour
Drell-Yan data used

Data Theory

AG, Salko, Smolkovic, Stangl; 2212.10497, 2306.09401

855 ops

Admir Greljo | Flavour at high-pT

https://flav-io.github.io/ See also: Allwicher et al; 2207.10756

https://arxiv.org/abs/2212.10497
https://arxiv.org/abs/2306.09401
https://flav-io.github.io/
https://arxiv.org/abs/2207.10756


[C(1)
lq ](l)

st (l̄lγμll)(q̄sγμqt) → [C(1)
lq ](l)

st = δst[C(1)
lq ](l)

δ + (YuY†
u)st[C(1)

lq ](l)
YuY†

u
+ …

AG, Salko, Smolkovic, Stangl; 2212.10497

Admir Greljo | Flavour at high-pT

Example I
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https://arxiv.org/abs/2212.10497


∼ y2
t

VtdV*td VtsV*td VtbV*td
VtdV*ts VtsV*ts VtbV*ts
VtdV*tb VtsV*tb VtbV*tb
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st = δst[C(1)
lq ](l)
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u)st[C(1)

lq ](l)
YuY†

u
+ … MFV expansion

AG, Salko, Smolkovic, Stangl; 2212.10497
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Example I

24

https://arxiv.org/abs/2212.10497
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AG, Salko, Smolkovic, Stangl; 2212.10497
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Example I
MFV expansion
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https://arxiv.org/abs/2212.10497
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Example I
MFV expansion
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Linear MFV: | [C(1)
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MFV Expansion validity?
Kagan et al; 0903.1794
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lq ](μ)
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lq ](l)
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u
+ …

AG, Salko, Smolkovic, Stangl; 2212.10497

A large class of models ruled out!
AG, Marzocca; 1704.09015
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Example I
MFV expansion
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https://arxiv.org/abs/0903.1794
https://arxiv.org/abs/2212.10497
https://arxiv.org/abs/1704.09015


↵ |✏↵↵
Vi

|
|✏↵↵

SLL,RR
(µ)| |✏↵↵

TL,R
(µ)|

µ = 1 TeV µ = 2 GeV µ = 1 TeV µ = 2 GeV

e 13 (3.9) 15 (4.5) 32 (9.5) 6.5 (2.0) 5.2 (1.6)

µ 7.0 (3.4) 8.1 (3.9) 17 (8.3) 3.5 (1.7) 2.8 (1.4)

⌧ 25 (12) 29 (13) 60 (28) 14 (6.6) 11 (5.2)

Table 6. 95% CL limits on the neutral-current WCs from pp ! e
↵
ē
↵ at the LHC, with i =

LL,RR,LR,RL. We also show in parenthesis the naive projections of the expected limits for the HL-
LHC (3 ab�1), assuming that the error will be statistically dominated.

Figure 4. Exclusion limits at 95% CL on c ! u`
+
`
� transitions in the (✏eeVi

, ✏
µµ
Vi

) plane, where i =
LL,RR,LR,RL. The region outside the red contour is excluded by D meson decays, while the region
outside the blue contour is excluded by high-pT LHC.

chiral enhancement in D ! `
+
`
� compared to the corresponding SM contribution. Furthermore,

the c ! u⌧
+
⌧
� transition is only accessible at high-pT , since the corresponding low-energy decays

are kinematically forbidden. Similar conclusions have been reached in the LFV channels [48].
Namely, the high-pT bounds on the µe channel are stronger than those from low-energy, with
the exception of the scalar operators, while for ⌧e and ⌧µ channels, high-pT tails offer the only
available limits.

Concerning the possible caveats to the high-pT limits, there are two major differences with
respect to the discussion for charge currents in Section 4.3. Firstly, the c ! u`

+
`
� SM amplitude

is extremely suppressed, as mentioned before. Thus, the dimension-8 interference with the SM
is negligible and unable to affect the leading dimension-6 squared contribution, even though the
two are formally of the same order in the EFT expansion. Nonetheless, semileptonic operators
with flavor-diagonal quark couplings which negatively interfere with the SM background can be
used to tune a (partial) cancellation between NP contributions in the tails. Secondly, most UV

– 20 –

Fuentes-Martin, AG, Camalich, Ruiz-Alvarez; 
2003.12421

Rare  decaysc → uℓ+ℓ−

Drell-Yan cu → ℓ+ℓ−

Systematic exploration of the 
low-  / high-  interplay:pT pT

30

ℒΔC=1
NP ≈

ϵℓℓ
V

(15 TeV)2
(ūRγμcR)(ℓ̄RγμℓR)

1609.07138, 1704.09015, 
1811.07920, 1805.11402, 
1912.00425, 2002.05684, 
2008.07541, 2104.02723, 
2111.04748, …

CMS-PAS-EXO-19-019

Example II

Admir Greljo | Flavour at high-pT

c
u

ℓ
ℓ

https://arxiv.org/abs/2003.12421
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Conclusions

• A UV theory will leave imprints on the flavour structure of the SMEFT.

• The selection rules implied have the advantage of reducing the number of 
important SMEFT operators by truncating the flavour-spurion expansion.

• We constructed operator bases order by order in the spurion expansion for 
28 different flavour symmetry assumptions.

• Ready-for-use setups for phenomenological studies and global fits.

• Classification of new physics mediators contributing at leading order in both 
the MFV and the SMEFT power counting (leading flavour-blind directions).

• High-mass Drell-Yan data added to the global SMEFT likelihood and studied 
its interplay with flavour data.

Admir Greljo | Flavour at high-pT
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where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
cross section does not depend on the azimuthal angle, we can write d⌦c.m. = 2⇡ sin ✓c.m. d✓c.m. ,
where ✓c.m. is the scattering angle in the center of mass frame.

• Compute the total cross section for 2 ! 2 scattering in �
4 theory in the center-of-mass

frame at a given center-of-mass energy.

As a final exercise, evaluate the cross section for e+e� ! µ
+
µ
� following from

1

4

X

sA,sB ,r1,r2

|M |2 = 2e4
t
2 + u

2

s2
, (11)

derived last time. Work in the center-of-mass frame in the high-energy limit, where one can
neglect the electron and muon masses. We choose to parameterize the momenta as

qA = E(1, 0, 0, 1), qB = E(1, 0, 0,�1)
p1 = E(1, sin ✓, 0, cos ✓), p2 = E(1,� sin ✓, 0,� cos ✓)

. (12)

• Show that the di↵erential muon production cross section is

d�

d⌦
=

↵
2
em

4s

�
1 + cos2 ✓

�
, ↵em ⌘ e

2

4⇡
, (13)

and sketch the physical meaning of this result.

• Show that the total cross section reads

� =
4⇡↵2

em

3s
. (14)

�LSM � q̄iY
ij
u ujH̃ + q̄iY

ij
d djH + ¯̀

iY
ij
e ejH (15)

�LSMEFT � 1

⇤⌫
`iY

ij
⌫ `jHH (16)
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where ⌦c.m. is the solid angle of particle 1 and Ec.m. = EA +EB in this frame. Since the
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⟨H⟩ ∼ 174 GeV

?
*sample uniformly in [0,1] interval ≈ 𝒪(1)
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3



SMEFT: Systematic BSM

35

EFT-workflow

E

Matching

Matching

NP

SMEFT

LEFT
R
G

R
G

R
G

Jenkins, Manohar, Trott [1308.2627]

Jenkins, Manohar, Trott [1310.4838]

Alonso et al. [1312.2014]

Jenkins, Manohar, Sto↵er [1709.04486]

Dekens, Sto↵er [1908.05295]

Jenkins, Manohar, Sto↵er [1711.05270]

Obs
erva

bles

New
mode

l

Anders Eller Thomsen (U. Bern) Functional Matching HEFT 2022 2

WET

1308.2627, 
1310.4838, 
1312.2014, 
1709.04486, 
1711.05270, 
1711.10391, 
1710.06445, 
1804.05033, 
1908.05295, 
2010.16341,
2012.08506, 
2012.07851, 
…



A Warsaw basis

Here we list the �B = 0 dimension-6 fermionic SMEFT operators in the Warsaw basis [13]
with division into classes as presented in [14].

5–7: Fermion Bilinears

non-hermitian (L̄R)

5:  2
H

3 6:  2
XH

QeH (H†
H)(¯̀perH) QeW (¯̀p�µ⌫er)⌧ IHW

I
µ⌫ QuG (q̄p�µ⌫TA

ur)H̃G
A
µ⌫ QdG (q̄p�µ⌫TA

dr)HG
A
µ⌫

QuH (H†
H)(q̄purH̃) QeB (¯̀p�µ⌫er)HBµ⌫ QuW (q̄p�µ⌫ur)⌧ IH̃W

I
µ⌫ QdW (q̄p�µ⌫dr)⌧ IHW

I
µ⌫

QdH (H†
H)(q̄pdrH) QuB (q̄p�µ⌫ur)H̃Bµ⌫ QdB (q̄p�µ⌫dr)HBµ⌫

hermitian (+ QHud) ⇠ 7:  2
H

2
D

(L̄L) (R̄R) (R̄R
0)

Q
(1)
H`

(H†
i
 !
D µH)(¯̀p�µ`r) QHe (H†

i
 !
D µH)(ēp�µer) QHud i(H̃†

DµH)(ūp�µdr)

Q
(3)
H`

(H†
i
 !
D

I
µH)(¯̀p⌧ I�µ`r) QHu (H†

i
 !
D µH)(ūp�µur)

Q
(1)
Hq

(H†
i
 !
D µH)(q̄p�µqr) QHd (H†

i
 !
D µH)(d̄p�µdr)

Q
(3)
Hq

(H†
i
 !
D

I
µH)(q̄p⌧ I�µqr)

8: Fermion Quadrilinears

hermitian

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Q`` (¯̀p�µ`r)(¯̀s�µ`t) Qee (ēp�µer)(ēs�µet) Q`e (¯̀p�µ`r)(ēs�µet)

Q
(1)
qq (q̄p�µqr)(q̄s�µqt) Quu (ūp�µur)(ūs�µut) Q`u (¯̀p�µ`r)(ūs�µut)

Q
(3)
qq (q̄p�µ⌧ Iqr)(q̄s�µ⌧ Iqt) Qdd (d̄p�µdr)(d̄s�µdt) Q`d (¯̀p�µ`r)(d̄s�µdt)

Q
(1)
`q

(¯̀p�µ`r)(q̄s�µqt) Qeu (ēp�µer)(ūs�µut) Qqe (q̄p�µqr)(ēs�µet)

Q
(3)
`q

(¯̀p�µ⌧ I`r)(q̄s�µ⌧ Iqt) Qed (ēp�µer)(d̄s�µdt) Q
(1)
qu (q̄p�µqr)(ūs�µut)

Q
(1)
ud

(ūp�µur)(d̄s�µdt) Q
(8)
qu (q̄p�µTA

qr)(ūs�µTA
ut)

Q
(8)
ud

(ūp�µTA
ur)(d̄s�µTA

dt) Q
(1)
qd

(q̄p�µqr)(d̄s�µdt)

Q
(8)
qd

(q̄p�µTA
qr)(d̄s�µTA

dt)

non-hermitian

(L̄R)(R̄L) (L̄R)(L̄R)

Q`edq (¯̀jper)(d̄sqtj) Q
(1)
quqd

(q̄jpur)✏jk(q̄ksdt)

Q
(8)
quqd

(q̄jpTA
ur)✏jk(q̄ksT

A
dt)

Q
(1)
`equ

(¯̀jper)✏jk(q̄ksut)

Q
(3)
`equ

(¯̀jp�µ⌫er)✏jk(q̄ks�
µ⌫
ut)
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and the new structures that appear in case of SU(2)3 symmetry are denoted in blue:

(q̄q)

O(1) : (q̄q) , (q̄3q3) , O(V ) : (q̄Vqq3) , V
a

q "ab(q̄3q
b) , H.c. ,

O
�
V

2
�
: (q̄VqV

†
q q) ,

h
✏bc(q̄VqV

c

q q
b) , H.c.

i
.

(2.12)

(ūu)

O(1) : (ūu) , (ū3u3) ,

O(�V ) : (ū�†
uVqu3) , (ūau3)"

ab(V †
q �u)b , ✏

ad
✏bc[ū

a
V

b

q (�u)
c
du3] , H.c. ,

✏bc[ū3V
b

q (�u)
c
au

a] , H.c. .

(2.13)

(d̄d)

O(1) : (d̄d) , (d̄3d3) ,

O(�V ) : (d̄�†
d
Vqd3) , (d̄ad3)"

ab(V †
q �d)b , ✏

ad
✏bc[d̄

a
V

b

q (�d)
c
dd3] , H.c. ,

✏bc[d̄3V
b

q (�d)
c
ad

a] , H.c. .

(2.14)

(ūd)

O(1) : (ū3d3) ,

O(�V ) : (ū�†
uVqd3) , (ū3V

†
q �dd) , (ūad3)"

ab(V †
q �u)b , (ū3d

a)"ab(Vq�
†
d
)b ,

✏
ad
✏bc[ūaV

b

q (�u)
c
dd3] , ✏

bc
✏ad[ū3(V

⇤
q )b(�

⇤
d
)c

d
d
a] , ✏

bc[ūa(V
⇤
q )b(�

⇤
u)c

a
d3] ,

✏bc[ū3V
b

q (�d)
c
ad

a] .
(2.15)

(q̄u)

O(1) : (q̄3u3) , O(V ) : (q̄Vqu3) , (V ⇤
q )a"

ab(q̄bu3) ,

O(�) : (q̄�uu) , (q̄ e�uu) ,

O(�V ) : (q̄3V
†
q �uu) , (q̄3V

†
q
e�uu) , ✏bc[q̄3V

b

q (�u)
c
au

a] , ✏ac[q̄3V
b

q (�
⇤
u)b

c
u
a] .

(2.16)

(q̄d)

O(1) : (q̄3d3) , O(V ) : (q̄Vqd3) , (V ⇤
q )a"

ab(q̄bd3) ,

O(�) : (q̄�dd) , (q̄ e�dd) ,

O(�V ) : (q̄3V
†
q �dd) , (q̄3V

†
q
e�dd) , ✏bc[q̄3V

b

q (�d)
c
ad

a] , ✏ac[q̄3V
b

q (�
⇤
d
)b

c
d
a] .

(2.17)
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Decomposition of quartic structures

Let us continue with the construction of the quartic structures. In what follows, we
focus on the unique7 structures only. Starting with O(1) structures, we follow the similar
reasoning as in the case of bilinears, obtaining six structures: (q̄aqb)(q̄bqa), (q̄aq3)(q̄3qa),
(ūaub)(ūbua), (ūau3)(ū3ua), (d̄adb)(d̄bda) and (d̄ad3)(d̄3da). In case of SU(2)3 symmetry,
only one additional O(1) structure appears: (q̄au3)"ab(q̄bd3).

At O(V ), the U(2)3 and SU(2)3 unique structures are (q̄aq3)(q̄Vqq
a), (q̄3qa)(q̄a✏bcV c

q q
b)

and (q̄3qa)(q̄Vq✏acq
c), while at O(V 2) there is only one structure of the form (q̄aV

†
q q)(q̄Vqq

a).
With one insertion of � spurion, there are four U(2)3 unique ones: (q̄aV

†
q q)(�u)ab(ū3ub),

(q̄aq3)(�d)ab(d̄3db), (q̄au3)(�d)ab(q̄3db) and (q̄3ua)(�u)ba(q̄bd3).
With the insertion of both �u,d and Vq spurions, we obtain six O(�V ) U(2)3 structures

given by (ūau3)(ū�
†
uVqu

a), (d̄ad3)(d̄�
†
d
Vqd

a), (q̄aV
†
q q)(�u)ab(ū3ub), (q̄aV

†
q q)(�d)ab(d̄3db),

(q̄au3)(�d)ab(q̄Vqd
b) and (q̄Vqu

a)(�u)ba(q̄bd3). There are, however, plenty of new SU(2)3

unique structures that emerge at both O(�) and O(�V ). The complete list is presented
below and the SU(2)3 structures are denoted in blue:

(q̄q)(q̄q)

O(1) : (q̄aq
b)(q̄bq

a) , (q̄aq3)(q̄3q
a) ,

O(V ) : (q̄aq3)(q̄Vqq
a) , (q̄3q

a)(q̄a✏bcV
c

q q
b) , (q̄3q

a)(q̄Vq✏acq
c) , H.c. ,

O
�
V

2
�
: (q̄aV

†
q q)(q̄Vqq

a) .

(2.18)

(ūu)(ūu)

O(1) : (ūau
b)(ūbu

a) , (ūau3)(ū3u
a) ,

O(�V ) : (ūau3)(ū�
†
uVqu

a) , (ūau3)✏
ab
✏de[ūbV

d
q (�u)

e
cu

c] , ✏
be
✏cd(ūau3)[ūbV

c
q (�u)

d
eu

a] , H.c. ,

(ū3u
a)[ūaV

c
q ✏cd(�u)

d
bu

b] , (ū3u
a)[ūa✏bdV

c
q (�

⇤
u)c

d
u
b] , ✏ac(ū3u

a)[ūbV
d
q (�

⇤
u)d

b
u
c] , H.c. .
(2.19)

(d̄d)(d̄d)

O(1) : (d̄ad
b)(d̄bd

a) , (d̄ad3)(d̄3d
a) ,

O(�V ) : (d̄ad3)(d̄�
†
dVqd

a) , (d̄ad3)✏
ab
✏de[d̄bV

d
q (�d)

e
cd

c] , ✏
be
✏cd(d̄ad3)[d̄bV

c
q (�d)

d
ed

a] , H.c. ,

(d̄3d
a)[d̄aV

c
q ✏cd(�d)

d
bd

b] , (d̄3d
a)[d̄a✏bdV

c
q (�

⇤
d)c

d
d
b] , ✏ac(d̄3d

a)[d̄bV
d
q (�

⇤
d)d

b
d
c] , H.c. .

(2.20)

7
Epithets ‘unique’ and ‘non-factorizable’ are used interchangeably when dealing with the quartic structures.

This nomenclature refers simply to the quartic structures that cannot be formed as a product of two factorizing

bilinears fully invariant under the discussed flavor group. Needless to say, the final spurion counting of the

SMEFT operators is performed taking the full set of quartic structures.
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• Examples of bilinear structures

• Examples of quartic structures

*the new structures that appear in case of 
SU(2)3 symmetry are denoted in blue 37

U(2)3Q ⇥ U(1)6L

U(2)3
Q
⇥U(1)6

L
O(1) O(V ) O(V 2) O(�) O(�V ) O(y) O(yV ) O(y�) O(y�V )

(LL)(LL) Q
(1,3)
`q

12 6 6 6

(RR)(RR) Qeu, Qed 12 6 6

(LL)(RR)
Q`u, Q`d 12 6 6

Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3

(LR)(LR) Q
(1,3)
`equ

6 6 6 6 6 6 6 6

Total 42 9 9 9 12 12 9 9 9 9 9 9 9 9

U(2)3Q ⇥ U(1)3L

U(2)3
Q
⇥U(1)3

L
O(1) O(V ) O(V 2) O(�) O(�V )

(LL)(LL) Q
(1,3)
`q

12 6 6 6

(RR)(RR) Qeu, Qed 12 6 6

(LL)(RR)
Q`u, Q`d 12 6 6

Qqe 6 3 3 3

(LR)(RL) Q`edq 3 3 3 3 3 3 3 3

(LR)(LR) Q
(1,3)
`equ

6 6 6 6 6 6 6 6

Total 51 9 18 18 9 9 9 21 21

D Group identities

In SU(2) the following identities hold:

"
ij
"k` = �

i
`�

j
k � �

i
k�

j
` (D.1)

using the convention "12 = �"
12.

In SU(N) the following identities hold:

t
ai
jt

ak
` =

1

2
�
i
`�

k
j �

1

2N
�
i
j�

k
`, (D.2)

f
abc
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where the defining identity for the symmetric tensor is

t
a
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
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In the case of SU(2) there is no 3-index symmetric tensor and Eq. (D.4) implies the identity
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Watch out redundancies

Example:  quarkU(2)3



https://github.com/aethomsen/SMEFTflavor

Tools

• Mathematica package SMEFTflavor to facilitate the use of flavor symmetries 
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https://github.com/aethomsen/SMEFTflavor
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Leading directions & DY

AG, Palavric; 2305.08898

• Leading directions: High-  Drell-Yan vs APVpT

See also Falkowski et al; 1706.03783 

https://arxiv.org/abs/2305.08898
https://arxiv.org/abs/1706.03783
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AG, Thomsen, Palavric; 2203.09561

Summary

AG, Palavric; wip

https://arxiv.org/abs/2203.09561


Towards a global SMEFT likelihood

41

• Building a global likelihood (GL) is very useful.

Implementing the global SMEFT likelihood

I Based on these tools, we have started building the SMEFT LikeLIhood
I smelli https://github.com/smelli/smelli

Aebischer, Kumar, PS, Straub, arXiv:�8��.��6�8

I L(~C) ⇡
Q

i L
i
exp(~Oth(~C, ~✓�)) ⇥ L̃exp(~Oth(~C, ~✓�))

where
I ~C WET or SMEFT Wilson coef�cients
I ~✓� �xed nuisance parameters

I ~Oth(~C, ~✓�) observable predictions

I Liexp(~O) experimental likelihood from
measurement i for observables ~O

I L̃exp(~O) modi�ed exp. likelihood:

�� ln L̃exp(~O) = ~DT(⌃exp + ⌃th)
��~D ,

with ~D = ~O� ~Oexp and covariance
matrices ⌃exp,th (Gaussian approx.)

Peter Stangl (University of Bern) HEFT ����, Granada, �6 June ���� ��/�8

Implementing the global SMEFT likelihood

I Based on these tools, we have started building the SMEFT LikeLIhood
I smelli https://github.com/smelli/smelli

Aebischer, Kumar, PS, Straub, arXiv:�8��.��6�8

I L(~C) ⇡
Q

i L
i
exp(~Oth(~C, ~✓�)) ⇥ L̃exp(~Oth(~C, ~✓�))

where
I ~C WET or SMEFT Wilson coef�cients
I ~✓� �xed nuisance parameters

I ~Oth(~C, ~✓�) observable predictions

I Liexp(~O) experimental likelihood from
measurement i for observables ~O

I L̃exp(~O) modi�ed exp. likelihood:

�� ln L̃exp(~O) = ~DT(⌃exp + ⌃th)
��~D ,

with ~D = ~O� ~Oexp and covariance
matrices ⌃exp,th (Gaussian approx.)

EWPO

QFV

LFV

MDM

Peter Stangl (University of Bern) HEFT ����, Granada, �6 June ���� ��/�8

Aebischer, Kumar, Stangl, Straub,1810.07698

Basis for implementation

I Computing hundreds of relevant �avour observables properly accounting for
theory uncertainties
I �avio https://flav-io.github.io Straub, arXiv:�8��.�8���

I Already used in O(���) papers since ���6

I Representing and exchanging thousands of Wilson coef�cient values, different
EFTs, possibly different bases
I Wilson coef�cient exchange format (WCxf) https://wcxf.github.io/

Aebischer et al., arXiv:����.����8

I RG evolution above and below the EW scale, matching from SMEFT to the
weak effective theory (WET)
I wilson https://wilson-eft.github.io Aebischer, Kumar, Straub, arXiv:�8��.�����

based on
SMEFT RGE: Alonso, Jenkins, Manohar, Trott, arXiv:���8.�6��, arXiv:����.�8�8, arXiv:����.����

(ported from DsixTools: Celis, Fuentes-Martin, Vicente, Virto, arXiv:����.�����)
SMEFT! WET matching: Jenkins, Manohar, Stoffer, arXiv:����.���86

WET RGE: Jenkins, Manohar, Stoffer, arXiv:����.�����

Peter Stangl (University of Bern) HEFT ����, Granada, �6 June ���� ��/�8

Implementing the global SMEFT likelihood

I Based on these tools, we have started building the SMEFT LikeLIhood
I smelli https://github.com/smelli/smelli

Aebischer, Kumar, PS, Straub, arXiv:�8��.��6�8

I L(~C) ⇡
Q

i L
i
exp(~Oth(~C, ~✓�)) ⇥ L̃exp(~Oth(~C, ~✓�))

where
I ~C WET or SMEFT Wilson coef�cients
I ~✓� �xed nuisance parameters

I ~Oth(~C, ~✓�) observable predictions

I Liexp(~O) experimental likelihood from
measurement i for observables ~O

I L̃exp(~O) modi�ed exp. likelihood:

�� ln L̃exp(~O) = ~DT(⌃exp + ⌃th)
��~D ,

with ~D = ~O� ~Oexp and covariance
matrices ⌃exp,th (Gaussian approx.)

Peter Stangl (University of Bern) HEFT ����, Granada, �6 June ���� ��/�8

Aebischer, Kumar, Straub,1804.05033 

Basis for implementation

I Computing hundreds of relevant �avour observables properly accounting for
theory uncertainties
I �avio https://flav-io.github.io Straub, arXiv:�8��.�8���

I Already used in O(���) papers since ���6

I Representing and exchanging thousands of Wilson coef�cient values, different
EFTs, possibly different bases
I Wilson coef�cient exchange format (WCxf) https://wcxf.github.io/

Aebischer et al., arXiv:����.����8

I RG evolution above and below the EW scale, matching from SMEFT to the
weak effective theory (WET)
I wilson https://wilson-eft.github.io Aebischer, Kumar, Straub, arXiv:�8��.�����

based on
SMEFT RGE: Alonso, Jenkins, Manohar, Trott, arXiv:���8.�6��, arXiv:����.�8�8, arXiv:����.����

(ported from DsixTools: Celis, Fuentes-Martin, Vicente, Virto, arXiv:����.�����)
SMEFT! WET matching: Jenkins, Manohar, Stoffer, arXiv:����.���86

WET RGE: Jenkins, Manohar, Stoffer, arXiv:����.�����

Peter Stangl (University of Bern) HEFT ����, Granada, �6 June ���� ��/�8

Straub,1810.08132 

• Challenges for constructing the GL: 
Compute huge number of observables in 
the SMEFT (a theory of many 
parameters) BUT once and for all

• Say you’ve got a new model and 
want to confront it against data. 
Step 1: Match it to the SMEFT  
(now automated to one-loop) 
Step 2: Plug into the GL

smelli v1.1.1: Flavor + EWPT Aebischer, Kumar, PS, Straub, arXiv:�8��.��6�8

LFV
FCNC

FCCC
Z

W

τ

μ
b→s

b→d

b→u

b→c

s→u

s→d
d→u

∆F=2

EWPT
LE

Peter Stangl (University of Bern) HEFT ����, Granada, �6 June ���� ��/�8

https://flav-io.github.io/

https://flav-io.github.io/


NP in the Drell-Yan Tails
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AG, Salko, Smolkovic, Stangl; 2212.10497

https://arxiv.org/abs/2212.10497


AG, Palavric; wip

43

Drell-Yan in the SMEFT



SMEFT fit: 1D

AG, Salko, Smolkovic, Stangl; 2212.1049744

4F SMEFT operators with arbitrary flavor

Drell-Yan data used

https://arxiv.org/abs/2212.10497
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Leading directions: Fermions

• See scalars, vectors and exceptional cases in AG, Palavric; 2305.08898

https://arxiv.org/abs/2305.08898







