Flavour at high-p_T

Progress in high pT (top, Higgs, flavour at high pT)

Admir Greljo

Flavour Anarchy

- SMEFT at $dim[\mathcal{O}] = 6$ \implies New sources of flavour violation
- Already strong constraints!

Flavour Anarchy

• CMELT -+ 1:00 [W]

 \Longrightarrow

Alre

- Is this the end of my talk?
- No! Why should BSM be flavour-anarchic? After all,

Alignment

 Y^u/Y^d

$$V \sim \begin{bmatrix} 1 & 0.2 & 0.2^3 \\ 0.2 & 1 & 0.2^2 \\ 0.2^3 & 0.2^2 & 1 \end{bmatrix}$$

The CKM mixing

$$\Delta F = 2$$
 $cLFV$ $EDMs$

Thysics Briefing Book, 1910.11775

\mathscr{L}_{SM} : Accidental symmetries

$$q_{i}, \ell_{i}, u_{i}, d_{i}, e_{i}$$
 $i = 1,2,3$

$$\mathscr{L}_{\mathsf{SM}}$$
 sans Yukawa:

$$\mathscr{L}_{\text{SM}}$$
 sans Yukawa: $U(3)_q \times U(3)_U \times U(3)_D \times U(3)_l \times U(3)_E$

$$-\mathcal{L}_{\text{Yuk}} = \bar{q}V^{\dagger}\hat{Y}^{u}\tilde{H}u + \bar{q}\hat{Y}^{d}Hd + \bar{l}\hat{Y}^{e}He$$
[$U(3)^{5}$ transformation and a singular value decomposition theorem]

$$\mathcal{L}_{\text{SM}}: U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$$

Exact (classical) accidental symmetries

<u> However:</u>

• Peculiar observed values of $Y^{u,d,e} \Longrightarrow \mathsf{Approximate}$ flavour symmetries [suppression in FCNC, EDM, etc] [Mass hierarchy & CKM alignment]

- A viable BSM at the TeV-scale should no excessively violate accidental symmetries of the SM
- Key ingredient in model building:
 Flavour symmetry and its breaking pattern

Minimal Flavour Violation

No new sources of flavour breaking

$$G_Q = U(3)_q \times U(3)_u \times U(3)_d$$

 $Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}}).$

The MFV brings the cutoff to the TeV scale!

D'Ambrosio et al; hep-ph/0207036

Minimal Flavour Violation

No new sources of flavour breaking

$$G_Q = \mathrm{U}(3)_q \times \mathrm{U}(3)_u \times \mathrm{U}(3)_d$$

 $Y_u \sim (\mathbf{3}, \overline{\mathbf{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \overline{\mathbf{3}}).$

The MFV brings the cutoff to the TeV scale!

D'Ambrosio et al; hep-ph/0207036

$U(2)^{3}$

- Approximate symmetry of the SM
- Small spurions ⇒ consistent power counting
- Some protection against FCNC

$$G = \mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d$$

$$V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1}) , \qquad \Delta_u \sim (\mathbf{2}, \overline{\mathbf{2}}, \mathbf{1}) , \qquad \Delta_d \sim (\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}})$$

Barbieri et al; <u>1105.2296</u>

$$Y_{u,d} \sim \begin{pmatrix} \Delta_{u,d} & V_q \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Delta \ll V \ll 1$$
 $V^{\dagger} \propto (V_{td}, V_{ts})$

Why?

- I. No clear/preferred model
- 2. Short-distance direction still the most compelling (to many of us)
- 3. Experiments headed towards the precision/luminosity era

What?

- SM fields & Symmetries (Gauge + Poincaré)
- ullet Scale separation $\Lambda_{
 m Q}\gg v_{
 m EW}$
- Higher-dimensional operators encode short-distance physics:

$$\mathscr{L} = \mathscr{L}_{SM} + \sum_{Q} \frac{C_Q}{\Lambda_Q^{[Q]-4}} Q$$

SMEFT is challenging!

- Price for generality: Large number of independent parameters!
- **2499** at dim[\mathcal{O}] = 6 ($\Delta B = \Delta L = 0$)
- Why? (Partially due to) **FLAVOUR** i = 1,2,3
- If there was a single generation => 59

Adding Flavour to the SMEFT

AG, Thomsen, Palavric; 2203.09561

Contents

- 1 Introduction
- 2 Quark Sector
 - $2.1 \quad U(2)^3 \text{ symmetry}$
 - 2.2 $U(2)^3 \times U(1)_{d_3}$ symmetry
 - 2.3 $U(2)^2 \times U(3)_d$ symmetry
 - 2.4 MFV_Q symmetry
- 3 Lepton Sector
 - 3.1 $U(1)^3$ vectorial symmetry
 - $3.2 \quad U(1)^6 \text{ symmetry}$
 - 3.3 U(2) vectorial symmetry
 - $3.4 \quad U(2)^2 \text{ symmetry}$
 - 3.5 $U(2)^2 \times U(1)^2$ symmetry
 - 3.6 U(3) vectorial symmetry
 - 3.7 MFV_L symmetry
- 4 Conclusions
- A Warsaw basis
- B SMEFTflavor
- C Mixed quark-lepton operators
- D Group identities

- Charting the space of BSM by flavour symmetries
- Formulate several competing flavour hypothesis for $\dim 6$ SMEFT ($\Delta B=0$)
- Systematic approach: $U(3) \supset U(2) \supset U(1)$ (smaller symmetry \Longrightarrow more terms)
- 28 different case
- Minimal set of flavour-breaking spurions needed to reproduce masses and mixings
- Construct explicit (ready-for-use) operator bases order by order in the spurion expansion starting from the Warsaw basis

Example: $U(2)^3$ quark

AG, Thomsen, Palavric; 2203.09561

$U(2)_q \times U$	$(2)_u \times \mathrm{U}(2)_d$	0	(1)	0(V)	$\mathcal{O}(V)$	\mathcal{V}^2	0(V^3)	$\mathcal{O}($	Δ)	$\mathcal{O}(2$	$\Delta V)$
$\psi^2 H^3$	Q_{uH}	1	1	1	1					1	1	1	1
ψ 11	Q_{dH}	1	1	1	1					1	1	1	1
$\psi^2 X H$	$Q_{u(G,W,B)}$	3	3	3	3					3	3	3	3
ΨΜΠ	$Q_{d(G,W,B)}$	3	3	3	3					3	3	3	3
	$Q_{Hq}^{(1,3)}$	4		2	2	2							
$\psi^2 H^2 D$	Q_{Hu}, Q_{Hd}	4										2	2
	Q_{Hud}	1	1									2	2
(LL)(LL)	$Q_{qq}^{(1,3)}$	10		6	6	10	2	2	2				
(RR)(RR)	Q_{uu},Q_{dd}	10										6	6
	$Q_{ud}^{(1,8)}$	8										8	8
(LL)(RR)	$Q_{qu}^{(1,8)}, Q_{qd}^{(1,8)}$	16		8	8	8				4	4	12	12
(LR)(LR)	$Q_{quqd}^{(1,8)}$	2	2	4	4	2	2			8	8	12	12
То	otal	63	11	28	28	22	4	2	2	20	20	50	50

Table 2. Counting of the pure quark SMEFT operators (see Appendix A) assuming $U(2)_q \times U(2)_u \times U(2)_d$ symmetry in the quark sector. The counting is performed taking up to three insertions of V_q spurion, one insertion of $\Delta_{u,d}$ and one insertion of the $\Delta_{u,d}V_q$ spurion product. Left (right) numerical entry in each column gives the number of CP even (odd) coefficients at the given order in spurion counting.

https://github.com/aethomsen/SMEFTflavor

Summary

AG, Thomsen, Palavric; 2203.09561

Dim	Dim-6 SMEFT operators		Lepton sector						
B-co	B-conserving $\mathcal{O}(1)$ terms		$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^{2}$	$U(1)^{6}$	$U(1)^{3}$	No symmetry		
	MFV_Q	47	65	71	87	111	339		
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	82	105	115	132	168	450		
'	$U(2)^3 \times U(1)_{b_R}$	96	121	128	150	186	480		
sector	$U(2)^3$	110	135	147	164	206	512		
	No symmetry	1273	1347	1407	1425	1611	2499		

- Flavour-symmetric operator bases (no spurion insertions)
- Systematically from MFV towards anarchy: $U(3) \supset U(2) \supset U(1)$

Next slide

Summary

AG, Thomsen, Palavric; 2203.09561

Dim	Dim-6 SMEFT operators		Lepton sector						
B-conserving $\mathcal{O}(1)$ terms		$ackslash ext{MFV}_L$	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^{2}$	$U(1)^{6}$	$U(1)^{3}$	No symmetry		
	MFV_Q	47	65	71	87	111	339		
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	82	105	115	132	168	450		
	$U(2)^3 \times U(1)_{b_R}$	96	121	128	150	186	480		
sector	$U(2)^3$	110	135	147	164	206	512		
	No symmetry	1273	1347	1407	1425	1611	2499		

- Flavour-symmetric operator bases (no spurion insertions)
- Systematically from MFV towards anarchy: $U(3) \supset U(2) \supset U(1)$

Nontrivial Interplay

$U(3)^5$ flavour-symmetric basis

Class	Label	Operator	Label	Operator
	$\mathcal{O}^D_{\ell\ell}$	$(\bar{\ell}_i \gamma^\mu \ell^i)(\bar{\ell}_j \gamma_\mu \ell^j)$	$\mathcal{O}_{\ell q}^{(1)}$	$(ar{\ell}_i \gamma^\mu \ell^i)(ar{q}_j \gamma_\mu q^j)$
$(\bar{L}L)(\bar{L}L)$	$\mathcal{O}^E_{\ell\ell}$	$(ar{\ell}_i \gamma^\mu \ell^j) (ar{\ell}_j \gamma_\mu \ell^i)$	$\mathcal{O}_{\ell q}^{(3)}$	$(ar{\ell}_i \gamma^\mu \sigma^a \ell^i) (ar{q}_j \gamma_\mu \sigma^a q^j)$
(22)(22)	$\mathcal{O}_{qq}^{(1)D}$	$(ar{q}_i \gamma^\mu q^i) (ar{q}_j \gamma_\mu q^j)$	$\mathcal{O}_{qq}^{(3)D}$	$(ar{q}_i \gamma^\mu \sigma^a q^i) (ar{q}_j \gamma_\mu \sigma^a q^j)$
	$\mathcal{O}_{qq}^{(1)E}$	$(ar{q}_i \gamma^\mu q^j)(ar{q}_j \gamma_\mu q^i)$	$\mathcal{O}_{qq}^{(3)E}$	$(\bar{q}_i \gamma^\mu \sigma^a q^j)(\bar{q}_j \gamma_\mu \sigma^a q^i)$
	${\cal O}_{ee}$	$(ar{e}_i \gamma^\mu e^i) (ar{e}_j \gamma_\mu e^j)$	\mathcal{O}^D_{dd}	$(ar{d}_i \gamma^\mu d^i) (ar{d}_j \gamma_\mu d^j)$
	\mathcal{O}_{uu}^D	$(ar{u}_i \gamma^\mu u^i)(ar{u}_j \gamma_\mu u^j)$	\mathcal{O}^E_{dd}	$(ar{d}_i \gamma^\mu d^j) (ar{d}_j \gamma_\mu d^i)$
$(\bar{R}R)(\bar{R}R)$	\mathcal{O}^E_{uu}	$(ar{u}_i\gamma^\mu u^j)(ar{u}_j\gamma_\mu u^i)$	$\mathcal{O}_{ud}^{(1)}$	$(ar{u}_i \gamma^\mu u^i) (ar{d}_j \gamma_\mu d^j)$
	\mathcal{O}_{eu}	$(ar{e}_i \gamma^\mu e^i)(ar{u}_j \gamma_\mu u^j)$	$\mathcal{O}^{(8)}_{ud}$	$(\bar{u}_i \gamma^\mu T^A u^i)(\bar{d}_j \gamma_\mu T^A d^j)$
	\mathcal{O}_{ed}	$(ar{e}_i \gamma^\mu e^i) (ar{d}_j \gamma_\mu d^j)$		
	$\mathcal{O}_{\ell e}$	$(\bar{\ell}_i \gamma^\mu \ell^i)(\bar{e}_j \gamma_\mu e^j)$	$\mathcal{O}_{qu}^{(1)}$	$(ar{q}_i \gamma^\mu q^i) (ar{u}_j \gamma_\mu u^j)$
$(\bar{I}I)(\bar{D}D)$	\mathcal{O}_{qe}	$(ar{q}_i \gamma^\mu q^i) (ar{e}_j \gamma_\mu e^j)$	$\mathcal{O}_{qu}^{(8)}$	$(\bar{q}_i \gamma^\mu T^A q^i)(\bar{u}_j \gamma_\mu T^A u^j)$
$(\bar{L}L)(\bar{R}R)$	$\mathcal{O}_{\ell u}$	$(ar{\ell}_i \gamma^\mu \ell^i)(ar{u}_j \gamma_\mu u^j)$	$\mathcal{O}_{qd}^{(1)}$	$(ar{q}_i \gamma^\mu q^i) (ar{d}_j \gamma_\mu d^j)$
	$\mathcal{O}_{\ell d}$	$(ar{\ell}_i \gamma^\mu \ell^i) (ar{d}_j \gamma_\mu d^j)$	$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_i \gamma^\mu T^A q^i)(\bar{d}_j \gamma_\mu T^A d^j)$
	$\mathcal{O}_{\phi\ell}^{(1)}$	$(\phi^\dagger i \overset{\leftrightarrow}{D}_\mu \phi) (\bar{\ell}_i \gamma^\mu \ell^i)$	$\mathcal{O}_{\phi e}$	$(\phi^\dagger i \overset{\leftrightarrow}{D}_\mu \phi) (ar{e}_i \gamma^\mu e^i)$
$a/2 \downarrow 2 D$	$\mathcal{O}_{\phi\ell}^{(3)}$	$(\phi^\dagger i \overset{\leftrightarrow}{D^a_\mu} \phi) (ar{\ell}_i \gamma^\mu \sigma^a \ell^i)$	$\mathcal{O}_{\phi u}$	$(\phi^\dagger i \overset{\leftrightarrow}{D}_\mu \phi) (\bar{u}_i \gamma^\mu u^i)$
$\psi^2\phi^2D$	$\mathcal{O}_{\phi q}^{(1)}$	$(\phi^\dagger i \overset{\leftrightarrow}{D}_\mu \phi) (ar{q}_i \gamma^\mu q^i)$	$\mathcal{O}_{\phi d}$	$(\phi^\dagger i \overset{\leftrightarrow}{D}_\mu \phi) (ar{d}_i \gamma^\mu d^i)$
	$\mathcal{O}_{\phi q}^{(3)}$	$(\phi^\dagger i \overset{\leftrightarrow}{D^a_\mu} \phi) (ar{q}_i \gamma^\mu \sigma^a q^i)$		

Class	Label	Operator	Label	Operator
X^3	\mathcal{O}_W	$\varepsilon_{abc}W^{a\nu}_{\mu}W^{b\rho}_{\nu}W^{c\mu}_{\rho}$	\mathcal{O}_G	$f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$
Loop generated	$\mathcal{O}_{ ilde{W}}$	$\varepsilon_{abc}\tilde{W}^{a\nu}_{\mu}W^{b\rho}_{\nu}W^{c\mu}_{\rho}$	$\mathcal{O}_{ ilde{G}}$	$f_{ABC}\tilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$
ϕ^6	\mathcal{O}_ϕ	$(\phi^\dagger\phi)^3$		
$\phi^4 D^2$	$\mathcal{O}_{\phi\square}$	$(\phi^\dagger\phi)\Box(\phi^\dagger\phi)$	$\mathcal{O}_{\phi D}$	$(\phi^\dagger D_\mu \phi)[(D^\mu \phi)^\dagger \phi]$
	$\mathcal{O}_{\phi B}$	$(\phi^\dagger\phi)B_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi WB}$	$(\phi^\dagger \sigma^a \phi) W^a_{\mu \nu} B^{\mu \nu}$
$X^2\phi^2$	$\mathcal{O}_{\phi ilde{B}}$	$(\phi^\dagger\phi) ilde{B}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\phi ilde{W}B}$	$(\phi^\dagger\sigma^a\phi) \tilde{W}^a_{\mu\nu} B^{\mu\nu}$
Loop generated	$\mathcal{O}_{\phi W}$	$(\phi^\dagger\phi)W^a_{\mu u}W^{a\mu u}$	$\mathcal{O}_{\phi G}$	$(\phi^\dagger\phi)G^A_{\mu u}G^{A\mu u}$
	$\mathcal{O}_{\phi ilde{W}}$	$(\phi^\dagger\phi) ilde{W}^a_{\mu u}W^{a\mu u}$	$\mathcal{O}_{\phi ilde{G}}$	$(\phi^\dagger\phi) ilde{G}^A_{\mu u}G^{A\mu u}$

• Explicit operator basis: 41 CP even, 6 CP odd

$U(3)^5$ flavour-symmetric basis

Q: Which UV models produce this basis at the tree level?

AG, Palavric; 2305.08898

$U(3)^5$ flavour-symmetric basis

Q: Which UV models produce this basis at the tree level?

AG, Palavric; <u>2305.08898</u>

Leading (flavour-blind) directions

- Assume weakly coupled, perturbative UV with new spin-0, 1/2, 1 fields
- ullet New fields have $M_X\gg v_{EW}$ and leading (renormalisable) interactions
- UV/IR dictionary for SMEFT (de Blas et al, 1711.10391)
- Impose $U(3)^5$ flavour symmetry in the UV (AG, Palavric; 2305.08898)
 - New fields are irreps of the flavour group: 1, 3, 6, 8
 - Parameter reduction: Flavour tensors fixed by group theory

Leading directions

AG, Palavric; 2305.08898

- In most cases, a single flavour irrep integrates to a single Hermitian operator with a definite sign (a leading direction)
- These define a UV motivated operator basis suitable for ID fits
- The case for Top/Higgs/EW fits (Automatic protection against FCNC)

Leading directions

AG, Palavric; <u>2305.08898</u>

- In most cases, a single flavour irrep integrates to a single Hermitian operator with a definite sign (a leading direction)
- These define a UV motivated operator basis suitable for ID fits
- The case for Top/Higgs/EW fits (Automatic protection against FCNC)

Comprehensive summary of indirect searches for flavour-blind BSM mediators

Spin-0

Spin-1

Spin-1/2

Global SMEFT fits

- Progress in global SMEFT fits!
- Flavour assumptions?

See talk by Gauthier Durieux, PhysTeV Les Houches

[Greljo, Salko, Smolkovi, Stangl '22]

[Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch '22]

Fitmaker, <u>2012.02779</u>

```
Fitmaker EWPO+diboson+Higgs+top, linear

[Ellis, Madigan, Mimasu, Sanz, You '20]

SMEFiT diboson+Higgs+top, some NLO QCD,

[Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, Vryonidou, Zhang '21]

HEPfit EWPO, flavour, future

[de Blas, Pierini, Reina, Silvestrini '22]

EFTfitter top+B+EWPO, 14 op

[Grunwald, Hiller, Kröninger, Nollen '23]

SFitter EWPO+diboson diff.+Higgs, top+B

[Brivio, Bruggisser, Elmer, Geoffray, Luchmann, Plehn '22]

OptEx EWPO+diboson diff.+Higgs+diHiggs, 23 op, no 4f, linear

[Anisha, Das, Banerjee, Biekötter, Chakrabortty, Patra, Spannowsky '21]
```

Flavio B+Drell-Yan+EWPO

HighPT B+Dell-Yan

Drell-Yan in the SMEFT

Flavio implementation of the high-mass Drell-Yan data:

AG, Salko, Smolkovic, Stangl; <u>2212.10497</u>, <u>2306.09401</u>

Data

Search	Ref.	Channel	Luminosity
ATLAS	[45]	$pp \rightarrow ee$	$139 \; {\rm fb^{-1}}$
ALLAS	[40]	$pp ightarrow \mu \mu$	$139 \; {\rm fb^{-1}}$
CMS	[46]	pp o ee	$137 \; {\rm fb^{-1}}$
CMS	[40]	$pp o \mu\mu$	$140 \; {\rm fb^{-1}}$
ATLAS	[47]	pp o e u	$139 \; {\rm fb^{-1}}$
ALLAS		$pp o \mu u$	$139 \; {\rm fb^{-1}}$
CMS	[48]	$pp o e \nu$	$138 \; {\rm fb^{-1}}$
		$pp ightarrow \mu u$	$138 \; {\rm fb^{-1}}$

Drell-Yan data used

Theory

$Q_{lq}^{(1)} \ Q_{lq}^{(3)}$	$\begin{vmatrix} (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{l}_p \gamma_\mu \sigma^i l_r)(\bar{q}_s \gamma^\mu \sigma^i q_t) \end{vmatrix}$
$\overline{Q_{lu}}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
Q_{qe}	$(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$
Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ed}	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_{tj})$
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) arepsilon_{jk} (\bar{q}_s^k u_t)$
$Q_{lequ}^{(3)}$	$\left(\bar{l}_p^j \sigma_{\mu\nu} e_r \right) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

855 ops

$$[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_\mu l_l)(\bar{q}_s\gamma^\mu q_t)$$

$$[C_{lq}^{(1)}]_{st}^{(l)} (\bar{l}_l \gamma_\mu l_l) (\bar{q}_s \gamma^\mu q_t) \rightarrow [C_{lq}^{(1)}]_{st}^{(l)} = \delta_{st} [C_{lq}^{(1)}]_{\delta}^{(l)} + (Y_u Y_u^\dagger)_{st} [C_{lq}^{(1)}]_{Y_u Y_u^\dagger}^{(l)} + \dots \text{ MFV expansion}$$

$$\sim y_t^2 \begin{pmatrix} V_{td} V_{td}^* & V_{ts} V_{td}^* & V_{tb} V_{td}^* \\ V_{td} V_{ts}^* & V_{ts} V_{ts}^* & V_{tb} V_{ts}^* \\ V_{td} V_{tb}^* & V_{ts} V_{tb}^* & V_{tb} V_{tb}^* \end{pmatrix}$$

$$[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_\mu l_l)(\bar{q}_s\gamma^\mu q_t) \rightarrow [C_{lq}^{(1)}]_{st}^{(l)} = \delta_{st}[C_{lq}^{(1)}]_{\delta}^{(l)} + (Y_uY_u^\dagger)_{st}[C_{lq}^{(1)}]_{Y_uY_u^\dagger}^{(l)} + \dots \text{ MFV expansion}$$

$$[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_\mu l_l)(\bar{q}_s\gamma^\mu q_t) \rightarrow [C_{lq}^{(1)}]_{st}^{(l)} = \delta_{st}[C_{lq}^{(1)}]_{\delta}^{(l)} + (Y_uY_u^\dagger)_{st}[C_{lq}^{(1)}]_{Y_uY_u^\dagger}^{(l)} + \dots \text{ MFV expansion}$$

 $[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_\mu l_l)(\bar{q}_s\gamma^\mu q_t) \rightarrow [C_{lq}^{(1)}]_{st}^{(l)} = \delta_{st}[C_{lq}^{(1)}]_{\delta}^{(l)} + (Y_uY_u^\dagger)_{st}[C_{lq}^{(1)}]_{Y_uY_u^\dagger}^{(l)} + \dots \ \ \text{MFV expansion}$

$$[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_\mu l_l)(\bar{q}_s\gamma^\mu q_t) \rightarrow [C_{lq}^{(1)}]_{st}^{(l)} = \delta_{st}[C_{lq}^{(1)}]_{\delta}^{(l)} + (Y_uY_u^\dagger)_{st}[C_{lq}^{(1)}]_{Y_uY_u^\dagger}^{(l)} + \dots \text{ MFV expansion}$$

$$[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_\mu l_l)(\bar{q}_s\gamma^\mu q_t) \rightarrow [C_{lq}^{(1)}]_{st}^{(l)} = \delta_{st}[C_{lq}^{(1)}]_{\delta}^{(l)} + (Y_uY_u^\dagger)_{st}[C_{lq}^{(1)}]_{Y_uY_u^\dagger}^{(l)} + \dots \text{ MFV expansion}$$

MFV Expansion validity?

Kagan et al; 0903.1794

Linear MFV: $|[C_{lq}^{(1)}]_{Y_uY_u^{\dagger}}| \ll |[C_{lq}^{(1)}]_{\delta}|$

A large class of models ruled out!

AG, Marzocca; 1704.09015

$$\mathcal{Z}_{NP}^{\Delta C=1} \approx \frac{\epsilon_V^{\ell\ell}}{(15\,\mathrm{TeV})^2} (\bar{u}_R \gamma^\mu c_R) (\bar{\ell}_R \gamma^\mu \ell_R)$$

Rare
$$c \to u\ell^+\ell^-$$
 decays $c \times \ell$

$$u \times \ell$$
Drell-Yan $cu \to \ell^+\ell^-$

Systematic exploration of the low- p_T / high- p_T interplay:

1609.07138, 1704.09015, 1811.07920, 1805.11402, 1912.00425, 2002.05684, 2008.07541, 2104.02723, 2111.04748, ...

Conclusions

- A UV theory will leave imprints on the flavour structure of the SMEFT.
- The selection rules implied have the advantage of reducing the number of important SMEFT operators by truncating the flavour-spurion expansion.
- We constructed operator bases order by order in the spurion expansion for 28 different flavour symmetry assumptions.
- Ready-for-use setups for phenomenological studies and global fits.
- Classification of new physics mediators contributing at leading order in both the MFV and the SMEFT power counting (leading flavour-blind directions).
- High-mass Drell-Yan data added to the global SMEFT likelihood and studied its interplay with flavour data.

Thank you

https://physik.unibas.ch/en/persons/admir-greljo/admir-greljo@unibas.ch

Backup

Flavour Puzzle

SMEFT: Systematic BSM

A Warsaw basis

Here we list the $\Delta B = 0$ dimension-6 fermionic SMEFT operators in the Warsaw basis [13] with division into classes as presented in [14].

5–7: Fermion Bilinears

	non-hermitian $(\bar{L}R)$							
	5: $\psi^2 H^3$	6: $\psi^2 X H$						
Q_{eH}	$(H^{\dagger}H)(\bar{\ell}_{p}e_{r}H)$	Q_{eW}	$(\bar{\ell}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	Q_{eB}	$(\bar{\ell}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$			Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	

hermitian $(+Q_{Hud}) \sim 7: \psi^2 H^2 D$								
$(\bar{L}$	L)	$(\bar{R}R)$			$(\bar{R}R')$			
$Q_{H\ell}^{(1)} \qquad (H^{\dagger}i\overleftarrow{D})$	$\partial_{\mu}H)(\bar{\ell}_p\gamma^{\mu}\ell_r) \qquad Q_{H\epsilon}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}$	$_{\iota}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{Hud}	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$			
$Q_{H\ell}^{(3)} (H^{\dagger}i\overleftrightarrow{D})$	$(\bar{\ell}_p T^I \gamma^\mu \ell_r) \mid Q_{Hi}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$(H)(\bar{u}_p\gamma^\mu u_r)$					
$Q_{Hq}^{(1)} = (H^{\dagger}i\overleftarrow{D})$	$(Q_{\mu}H)(\bar{q}_p\gamma^{\mu}q_r) Q_{Hd}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$_{\iota}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$					
$Q_{Hq}^{(3)} (H^{\dagger}i\overleftrightarrow{D}_{H}^{\dagger})$	$(\bar{q}_p \tau^I \gamma^\mu q_r)$							

8: Fermion Quadrilinears

	hermitian							
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$				
$Q_{\ell\ell}$	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{\ell}_s \gamma^\mu \ell_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	$Q_{\ell e}$	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\ell u}$	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{u}_s \gamma^\mu u_t)$			
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{\ell d}$	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{d}_s \gamma^\mu d_t)$			
$Q_{\ell q}^{(1)}$	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$			
$Q_{\ell q}^{(3)}$	$(\bar{\ell}_p \gamma_\mu \tau^I \ell_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$			
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$			

non-hermitian						
$(\bar{I}$	$(\bar{R}L)$		$(\bar{L}R)(\bar{L}R)$			
$Q_{\ell edq}$	$(\bar{\ell}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$			
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$			
		$Q_{\ell equ}^{(1)}$	$(\bar{\ell}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$			
		$Q_{\ell equ}^{(3)}$	$(\bar{\ell}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$			

Example: $U(2)^3$ quark

Examples of bilinear structures

 $(\bar{q}q)$

$$\mathcal{O}(1): (\bar{q}q), \quad (\bar{q}_3q_3), \quad \mathcal{O}(V): (\bar{q}V_qq_3), \quad V_q^a \varepsilon_{ab}(\bar{q}_3q^b), \quad \text{H.c.},
\mathcal{O}(V^2): (\bar{q}V_qV_q^{\dagger}q), \quad \left[\epsilon_{bc}(\bar{q}V_qV_q^cq^b), \quad \text{H.c.}\right].$$
(2.12)

 $(\bar{u}u)$

$$\mathcal{O}(1): \quad (\bar{u}u) , \quad (\bar{u}_3 u_3) ,$$

$$\mathcal{O}(\Delta V): \quad (\bar{u}\Delta_u^{\dagger} V_q u_3) , \quad (\bar{u}_a u_3) \varepsilon^{ab} (V_q^{\dagger} \Delta_u)_b , \quad \epsilon^{ad} \epsilon_{bc} [\bar{u}^a V_q^b (\Delta_u)^c{}_d u_3] , \quad \text{H.c.} , \quad (2.13)$$

$$\epsilon_{bc} [\bar{u}_3 V_q^b (\Delta_u)^c{}_a u^a] , \quad \text{H.c.} .$$

 $(\bar{d}d)$

$$\mathcal{O}(1): \qquad (\bar{d}d) \ , \qquad (\bar{d}_3d_3) \ ,$$

$$\mathcal{O}(\Delta V): \qquad (\bar{d}\Delta_d^{\dagger}V_qd_3) \ , \qquad (\bar{d}_ad_3)\varepsilon^{ab}(V_q^{\dagger}\Delta_d)_b \ , \qquad \epsilon^{ad}\epsilon_{bc}[\bar{d}^aV_q^b(\Delta_d)^c{}_dd_3] \ , \qquad \text{H.c.} \ , \qquad (2.14)$$

$$\epsilon_{bc}[\bar{d}_3V_q^b(\Delta_d)^c{}_ad^a] \ , \qquad \text{H.c.} \ .$$

Watch out redundancies $\varepsilon^{ij}\varepsilon_{k\ell} = \delta^i{}_{\ell}\delta^j{}_{k} - \delta^i{}_{k}\delta^j{}_{\ell}$

Examples of quartic structures

 $(\bar{q}q)(\bar{q}q)$

```
\mathcal{O}(1) :  (\bar{q}_{a}q^{b})(\bar{q}_{b}q^{a}) ,  (\bar{q}_{a}q_{3})(\bar{q}_{3}q^{a}) , 

\mathcal{O}(V) :  (\bar{q}_{a}q_{3})(\bar{q}V_{q}q^{a}) ,  (\bar{q}_{3}q^{a})(\bar{q}_{a}\epsilon_{bc}V_{q}^{c}q^{b}) ,  (\bar{q}_{3}q^{a})(\bar{q}V_{q}\epsilon_{ac}q^{c}) ,  \text{H.c.} , 

\mathcal{O}(V^{2}) :  (\bar{q}_{a}V_{q}^{\dagger}q)(\bar{q}V_{q}q^{a}) . 

(2.18)
```

 $(\bar{u}u)(\bar{u}u)$

$$\mathcal{O}(1): \quad (\bar{u}_{a}u^{b})(\bar{u}_{b}u^{a}) \ , \quad (\bar{u}_{a}u_{3})(\bar{u}_{3}u^{a}) \ ,$$

$$\mathcal{O}(\Delta V): (\bar{u}_{a}u_{3})(\bar{u}\Delta_{u}^{t}V_{q}u^{a}) \ , \quad (\bar{u}_{a}u_{3})\epsilon^{ab}\epsilon_{de}[\bar{u}_{b}V_{q}^{d}(\Delta_{u})^{e}{}_{c}u^{c}] \ , \quad \epsilon^{be}\epsilon_{cd}(\bar{u}_{a}u_{3})[\bar{u}_{b}V_{q}^{c}(\Delta_{u})^{d}{}_{e}u^{a}] \ , \quad \text{H.c.} \ ,$$

$$(\bar{u}_{3}u^{a})[\bar{u}_{a}V_{q}^{c}\epsilon_{cd}(\Delta_{u})^{d}{}_{b}u^{b}] \ , \quad (\bar{u}_{3}u^{a})[\bar{u}_{a}\epsilon_{bd}V_{q}^{c}(\Delta_{u}^{*})_{c}^{d}u^{b}] \ , \quad \epsilon_{ac}(\bar{u}_{3}u^{a})[\bar{u}_{b}V_{q}^{d}(\Delta_{u}^{*})_{d}^{b}u^{c}] \ , \quad \text{H.c.} \ .$$

$$(2.19)$$

 $|(\bar{d}d)(\bar{d}d)|$

$$\begin{split} \mathcal{O}(1): \quad & (\bar{d}_a d^b)(\bar{d}_b d^a) \;, \quad (\bar{d}_a d_3)(\bar{d}_3 d^a) \;, \\ \mathcal{O}(\Delta V): & (\bar{d}_a d_3)(\bar{d}\Delta_d^\dagger V_q d^a) \;, \quad (\bar{d}_a d_3)\epsilon^{ab}\epsilon_{de}[\bar{d}_b V_q^d(\Delta_d)^e{}_c d^c] \;, \quad \epsilon^{be}\epsilon_{cd}(\bar{d}_a d_3)[\bar{d}_b V_q^c(\Delta_d)^d{}_e d^a] \;, \quad \text{H.c.} \;, \\ & (\bar{d}_3 d^a)[\bar{d}_a V_q^c\epsilon_{cd}(\Delta_d)^d{}_b d^b] \;, \quad (\bar{d}_3 d^a)[\bar{d}_a\epsilon_{bd} V_q^c(\Delta_d^*)_c{}^d d^b] \;, \quad \epsilon_{ac}(\bar{d}_3 d^a)[\bar{d}_b V_q^d(\Delta_d^*)_d{}^b d^c] \;, \quad \text{H.c.} \;. \end{split}$$

*the new structures that appear in case of $SU(2)^3$ symmetry are denoted in blue

Tools

• Mathematica package **SMEFTflavor** to facilitate the use of flavor symmetries

https://github.com/aethomsen/SMEFTflavor

In[*]:= CountingTable[{"quark:3U2", "lep:2U2"}, SpurionCount → 1, SMEFToperators → semiLeptonicOperators]

{quark:3U	0[1]	0[Vl]	0[Vq]	
(LL) (LL)	Olq(1,3)	8		4	4	4	4
(RR) (RR)	0eu	4					
	0ed	4					
(LL) (RR)	Olu	4		2	2		
	Old	4		2	2		
	0qe	4				2	2
(LR) (LR)	Olequ(1,3)	2	2	2	2	2	2
(LR) (RL)	Oledq	1	1	1	1	1	1
Total		31	3	11	11	9	9
	(LL) (LL) (RR) (RR) (LL) (RR) (LR) (LR) (LR) (RL)	(RR) (RR) Oeu Oed (LL) (RR) Olu Old Oqe (LR) (LR) Olequ (1,3) (LR) (RL) Oledq	(LL) (LL) Olq(1,3) 8 (RR) (RR) Oeu 4 Oed 4 (LL) (RR) Olu 4 Old 4 Oqe 4 (LR) (LR) Olequ(1,3) 2 (LR) (RL) Oledq 1	(LL) (LL) Olq(1,3) 8 (RR) (RR) Oeu 4 Oed 4 (LL) (RR) Olu 4 Old 4 Oqe 4 (LR) (LR) Olequ (1,3) 2 2 (LR) (RL) Oledq 1 1	(LL) (LL) Olq (1,3) 8 4 (RR) (RR) Oeu 4 4 Oed 4 2 (LL) (RR) Olu 4 2 Old 4 2 Oqe 4 4 (LR) (LR) Olequ (1,3) 2 2 2 (LR) (RL) Oledq 1 1 1	(LL) (LL) Olq(1,3) 8 4 4 (RR) (RR) Oeu 4 4 Oed 4 4 2 2 (LL) (RR) Olu 4 2 2 Old 4 2 2 Oqe 4 4 2 2 (LR) (LR) Olequ (1,3) 2 2 2 2 (LR) (RL) Oledq 1 1 1 1	(LL) (LL) Olq(1,3) 8 4 4 (RR) (RR) Oeu 4 4 Oed 4 4 2 2 (LL) (RR) Olu 4 2 2 Old 4 2 2 Oqe 4 2 2 (LR) (LR) Olequ(1,3) 2 2 2 2 (LR) (RL) Oledq 1 1 1 1 1

Leading directions & DY

ullet Leading directions: High- p_T Drell-Yan vs APV

AG, Palavric; 2305.08898

	S	calars		Vectors			
Field	\mathbf{Irrep}	$M^{ m LE}$ [TeV]	M^{DY} [TeV]	Field	Irrep	$M^{ m LE}$ [TeV]	M^{DY} [TeV]
$\omega_1 \sim ({f 3},{f 1})_{-\frac{1}{3}}$	$({\bf 3}_q,{\bf 3}_\ell)$	10.0	8.8	$\mathcal{U}_2 \sim (3,1)_{rac{2}{3}}$	$({\bf 3}_d,\bar{\bf 3}_e)$	3.7	5.6
$\omega_1 \sim (3,1)_{-\frac{1}{3}}$	$(3_u,3_e)$	4.7	7.5	$\mathcal{U}_2 \sim (3,1) rac{3}{2}$	$({\bf 3}_q,\bar{\bf 3}_\ell)$	14.4	8.3
$\omega_4 \sim ({f 3},{f 1})_{-rac{4}{3}}$	$(3_d,3_e)$	3.6	5.1	$\mathcal{U}_5 \sim ({f 3},{f 1})^{rac{3}{5}}$	$(3_u,\bar{3}_e)$	3.5	12.4
$\Pi_1 \sim (3,2)_{rac{1}{6}}$	$(3_d,\bar{3}_\ell)$	3.7	2.8	$\mathcal{Q}_1 \sim (3,2)_{rac{1}{6}}^{3}$	$(3_u,3_\ell)$	4.0	7.5
$\Pi_7 \sim ({f 3},{f 2})_{rac{7}{6}}^{\;\;0}$	$(3_u,\bar{3}_\ell)$	3.5	6.2	$\mathcal{Q}_5 \sim (3,2)_{-rac{5}{6}}^{$	$(3_d,3_\ell)$	3.4	5.1
$\Pi_7 \sim ({f 3},{f 2})_{rac{7}{6}}$	$({\bf 3}_q,\bar{\bf 3}_e)$	3.4	5.7	$\mathcal{Q}_5 \sim (3,2)_{-rac{5}{6}}^{}$	$({\bf 3}_q,{\bf 3}_e)$	7.7	6.6
$\zeta \sim (3,3)_{-\frac{1}{3}}$	$(3_q,3_\ell)$	4.3	5.3	$\mathcal{X} \sim (3,3)_{rac{2}{3}}$	$({\bf 3}_q,\bar{\bf 3}_\ell)$	3.1	8.7

Table 7: 2-quark-2-lepton phenomenology (Class II): The first two columns indicate gauge and flavor representations of the new scalars (left panel) and vectors (right panel). The third and fourth columns contain the lower bounds at 95% CL on the mediator masses (couplings set to unity) obtained by the low-energy experiments (M^{LE}) and the Drell-Yan production at the LHC (M^{DY}), respectively. For the induced SMEFT operators, consult the Tables 1 and 3 and Appendices C.1 and C.3 for more details.

See also Falkowski et al; <u>1706.03783</u>

Summary

AG, Thomsen, Palavric; 2203.09561

Dim-6 SMEFT operators		Lepton sector					
B-co	B-conserving $\mathcal{O}(1)$ terms		$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^{2}$	$U(1)^{6}$	$U(1)^{3}$	No symmetry
	MFV_Q	47	65	71	87	111	339
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	82	105	115	132	168	450
sector	$U(2)^3 \times U(1)_{b_R}$	96	121	128	150	186	480
sector	$U(2)^3$	110	135	147	164	206	512
	No symmetry	1273	1347	1407	1425	1611	2499

AG, Palavric; wip

Din	n-8 SMEFT operators	Lepton sector					
B-c	B-conserving $\mathcal{O}(1)$ terms		$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^{2}$	$U(1)^{6}$	$U(1)^{3}$	No symmetry
	MFV_Q	456	631	735	840	1266	4032
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	962	1205	1361	1482	2064	5550
	$U(2)^3 \times U(1)_{b_R}$	1124	1384	1546	1678	2278	5902
sector	$U(2)^{3}$	1366	1646	1838	1960	2650	6574
	No symmetry	19459	20512	21384	21599	24329	36971

Towards a global SMEFT likelihood

- Building a global likelihood (GL) is very useful.
- Say you've got a new model and want to confront it against data.
 Step I: Match it to the SMEFT (now automated to one-loop)
 Step 2: Plug into the GL

$$L(ec{C}) pprox \prod_{i} L_{ ext{exp}}^{i}(ec{O}_{ ext{th}}(ec{C}, ec{ heta}_{0})) imes ilde{L}_{ ext{exp}}(ec{O}_{ ext{th}}(ec{C}, ec{ heta}_{0}))$$
 $ec{C}_{ ext{SMEFT}}(\Lambda_{ ext{NP}})$
 $ec{C}_{ ext{SMEFT}}(\mu_{h}) \longrightarrow_{ ext{EWPO}} ext{EWPO}$
 $ec{C}_{ ext{WET}}(\mu_{l}) \longrightarrow_{ ext{LFV}} ext{QFV}$
 $ec{L}_{ ext{global}}(ec{C})$
 $ec{L}_{ ext{SM}}_{ ext{global}}(ec{C})$

https://flav-io.github.io/

Challenges for constructing the GL: Compute huge number of observables in the SMEFT (a theory of many parameters) BUT once and for all

- smelli Aebischer, Kumar, Stangl, Straub, 1810.07698
- wilson Aebischer, Kumar, Straub, 1804.05033
- **flavio** Straub, 1810.08132

NP in the Drell-Yan Tails

Drell-Yan in the SMEFT

	DY dim-6 ψ^4	Lepton sector AG, Pal					AG, Palavric; wip
$\mathcal{O}(1) \text{ terms}$		MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^6$	$U(1)^3$	No symmetry
	MFV_Q	7	14	14	21	21	63
Quark	$U(2)_q \times U(2)_u \times U(3)_d$	10	20	20	30	30	90
sector	$U(2)^3 \times U(1)_{b_R}$	12	24	24	36	36	108
sector	$U(2)^3$	12	24	26	36	42	126
	No symmetry	53	106	148	159	285	855

Table 3: Flavor counting of the dimension-6 operators of the type ψ^4 which contribute to Drell-Yan scattering.

SMEFT fit: ID

4F SMEFT operators with arbitrary flavor

$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$
$oxed{Q_{lq}^{(ar{3})}}$	$(ar{l}_p\gamma_\mu\sigma^i l_r)(ar{q}_s\gamma^\mu\sigma^i q_t)$
Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$
Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{ed}	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_{tj})$
$igg Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$
$Q_{lequ}^{(3)}$	$\left((\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t) \right)$

Drell-Yan data used

Search	Ref.	Channel	Luminosity
ATLAS	[45]	pp o ee	$139 \; {\rm fb^{-1}}$
ATLAS		$pp o \mu \mu$	$139 \; {\rm fb^{-1}}$
CMS	[46]	pp o ee	$137 \; {\rm fb^{-1}}$
	[40]	$pp o \mu\mu$	$140 \; {\rm fb^{-1}}$
ATLAS	[47]	pp ightarrow e u	$139 \; {\rm fb^{-1}}$
	[41]	$pp o \mu u$	$139 \; {\rm fb}^{-1}$
CMS	[48]	$pp o e \nu$	$138 \; {\rm fb^{-1}}$
		$pp ightarrow \mu u$	$138 \; {\rm fb^{-1}}$

Table 4: The 2σ bounds on different flavor structures of single Wilson coefficients at $\Lambda = 1$ TeV. See Sec. 5.1 for details.

		Drell-Yan tails		B decays		
Operator	Flavor	NC	CC	$b o q\ell\ell$	b o q u u	
	1113	[-0.068, 0.068]	-	[-0.005, 0.002]	[-0.035, 0.039]	
$\alpha^{(1)}$	2213	[-0.031, 0.032]	-	$[-4.96, 0.78] \times 10^{-4}$	[-0.035, 0.039]	
$\mathcal{O}_{lq}^{(1)}$	1123	[-0.145, 0.152]	-	$[-4.26, 0.98] \times 10^{-4}$	[-0.038, 0.017]	
	2223	[-0.066, 0.071]	-	$[7.71, 51.86] \times 10^{-5}$	[-0.038, 0.017]	
	1113	[-0.068, 0.068]	[-0.017, 0.017]	[-0.005, 0.002]	[-0.037, 0.033]	
$\alpha^{(3)}$	2213	[-0.032, 0.031]	[-0.029, 0.029]	$[-4.85, 0.7] \times 10^{-4}$	[-0.037, 0.033]	
$\mathcal{O}_{lq}^{(3)}$	1123	[-0.152, 0.145]	[-0.054, 0.051]	$[-4.26, 0.98] \times 10^{-4}$	[-0.015, 0.035]	
	2223	[-0.071, 0.066]	[-0.089, 0.089]	$[7.71, 51.86] \times 10^{-5}$	[-0.015, 0.035]	
	1113	[-0.068, 0.068]	-	[-0.005, 0.002]	[-0.038, 0.038]	
0	2213	[-0.032, 0.032]	-	$[-2.79, 2.43] \times 10^{-4}$	[-0.038, 0.038]	
\mathcal{O}_{ld}	1123	[-0.149, 0.149]	-	$[-4.04, 1.09] \times 10^{-4}$	[-0.007, 0.023]	
	2223	[-0.069, 0.069]	-	$[-1.68, 2.14] \times 10^{-4}$	[-0.007, 0.023]	
	1311	[-0.068, 0.068]	-	[-0.003, 0.004]	-	
0	1322	[-0.032, 0.032]	-	$[-3.35, 7.56] \times 10^{-4}$	-	
\mathcal{O}_{qe}	2311	[-0.148, 0.149]	-	[-0.003, 0.001]	-	
	2322	[-0.068, 0.069]	-	$[-2.39, 4.97] \times 10^{-4}$	-	
	1113	[-0.068, 0.068]	-	[-0.003, 0.004]	-	
0	2213	[-0.032, 0.032]	-	$[-7.03, 3.76] \times 10^{-4}$	-	
\mathcal{O}_{ed}	1123	[-0.149, 0.149]	-	[-0.002, 0.002]	-	
	2223	[-0.069, 0.069]	-	$[-4.05, 4.37] \times 10^{-4}$	-	
	1113	[-0.079, 0.079]	-	$[-1.19, 1.18] \times 10^{-4}$	-	
	1131	[-0.079, 0.079]	[-0.037, 0.037]	$[-1.18, 1.18] \times 10^{-4}$	-	
	2213	[-0.037, 0.037]	-	$[-3.48, 0.67] \times 10^{-5}$	-	
().	2231	[-0.037, 0.037]	[-0.061, 0.061]	$[-3.49, 0.68] \times 10^{-5}$	-	
\mathcal{O}_{ledq}	1123	[-0.173, 0.173]	-	$[-1.78, 1.79] \times 10^{-4}$	-	
	1132	[-0.173, 0.173]	[-0.113, 0.113]	$[-1.77, 1.78] \times 10^{-4}$	-	
	2223	[-0.08, 0.08]	-	$[-6.82, 16.57] \times 10^{-6}$	-	
	2232	[-0.08, 0.08]	[-0.194, 0.194]	$[-6.8, 16.48] \times 10^{-6}$	-	

Leading directions: Fermions

Field	Irrep	Normalization	Operator
$N \sim (1, 1)_0$	3_{ℓ}	$ \lambda_N ^2/(4M_N^2)$	$\mathcal{O}_{\phi\ell}^{(1)}-\mathcal{O}_{\phi\ell}^{(3)}$
$E \sim ({\bf 1},{\bf 1})_{-1}$	${\bf 3}_\ell$	$- \lambda_E ^2/(4M_E^2)$	${\cal O}_{\phi\ell}^{(1)} + {\cal O}_{\phi\ell}^{(3)} - [2y_e^*{\cal O}_{e\phi} + { m h.c.}]$
$\Delta_1 \sim (1,2)_{-rac{1}{2}}$	3_{e}	$ \lambda_{\Delta_1} ^2/(2M_{\Delta_1}^2)$	$\mathcal{O}_{\phi e} + [y_e^* \mathcal{O}_{e\phi} + \mathrm{h.c.}]$
$\Delta_3\sim (1,2)_{-rac{3}{2}}$	3_{e}	$- \lambda_{\Delta_3} ^2/(2M_{\Delta_3}^2)$	$\mathcal{O}_{\phi e} - [y_e^* \mathcal{O}_{e\phi} + \mathrm{h.c.}]$
$\Sigma \sim ({f 1},{f 3})_0$	${\bf 3}_\ell$	$ \lambda_\Sigma ^2/(16M_\Sigma^2)$	$3\mathcal{O}_{\phi\ell}^{(1)} + \mathcal{O}_{\phi\ell}^{(3)} + [4y_e^*\mathcal{O}_{e\phi} + \text{h.c.}]$
$\Sigma_1 \sim (1, 3)_{-1}$	${\bf 3}_\ell$	$ \lambda_{\Sigma_1} ^2/(16M_{\Sigma_1}^2)$	$\mathcal{O}_{\phi\ell}^{(3)} - 3\mathcal{O}_{\phi\ell}^{(1)} + [2y_e^*\mathcal{O}_{e\phi} + \mathrm{h.c.}]$
$U \sim ({\bf 3},{\bf 1})_{\frac{2}{3}}$	3_q	$\left \lambda_{U}\right ^{2}/(4M_{U}^{2})$	$\mathcal{O}_{\phi q}^{(1)} - \mathcal{O}_{\phi q}^{(3)} + [2y_u^* \mathcal{O}_{u\phi} + \text{h.c.}]$
$D \sim (3, 1)_{-\frac{1}{3}}$	3_q	$-\left \lambda_D\right ^2/(4M_D^2)$	$\mathcal{O}_{\phi q}^{(1)} + \mathcal{O}_{\phi q}^{(3)} - [2y_d^*\mathcal{O}_{d\phi} + \mathrm{h.c.}]$
(2.2)	3_{u}	$- \lambda_{Q_1}^u ^2/(2M_{Q_1}^2)$	$\mathcal{O}_{\phi u} - [y_u^* \mathcal{O}_{u\phi} + \mathrm{h.c.}]$
$Q_1 \sim (3,2)_{rac{1}{6}}$	3_d	$ \lambda_{Q_1}^d ^2/(2M_{Q_1}^2)$	$\mathcal{O}_{\phi d} + [y_d^* \mathcal{O}_{d\phi} + \mathrm{h.c.}]$
$Q_5 \sim ({f 3},{f 2})_{-rac{5}{6}}$	3_d	$- \lambda_{Q_5} ^2/(2M_{Q_5}^2)$	$\mathcal{O}_{\phi d} - [y_d^* \mathcal{O}_{d\phi} + \mathrm{h.c.}]$
$Q_7 \sim (3,2)_{rac{7}{6}}$	3_u	$ \lambda_{Q_7} ^2/(2M_{Q_7}^2)$	$\mathcal{O}_{\phi u} + [y_u^* \mathcal{O}_{u\phi} + \mathrm{h.c.}]$
$T_1 \sim ({f 3},{f 3})_{-rac{1}{3}}$	${\bf 3}_q$	$ \lambda_{T_1} ^2/(16M_{T_1}^2)$	$\mathcal{O}_{\phi q}^{(3)} - 3\mathcal{O}_{\phi q}^{(1)} + [2y_d^*\mathcal{O}_{d\phi} + 4y_u^*\mathcal{O}_{u\phi} + \text{h.c.}]$
$T_2 \sim (3,3)_{rac{2}{3}}$	3_q	$ \lambda_{T_2} ^2/(16M_{T_2}^2)$	$\mathcal{O}_{\phi q}^{(3)} + 3\mathcal{O}_{\phi q}^{(1)} + [4y_d^*\mathcal{O}_{d\phi} + 2y_u^*\mathcal{O}_{u\phi} + \text{h.c.}]$

• See scalars, vectors and exceptional cases in AG, Palavric; <u>2305.08898</u>

Field	Irrep	Normalization	Operator
$\mathcal{S}_1 \sim (1,1)_1$	3_{ℓ}	$ y_{\mathcal{S}_1} ^2/M_{\mathcal{S}_1}^2$	$\mathcal{O}^D_{\ell\ell} - \mathcal{O}^E_{\ell\ell}$
$\mathcal{S}_2 \sim (1,1)_2$	$\bar{6}_{e}$	$ y_{\mathcal{S}_2} ^2/(2M_{\mathcal{S}_2}^2)$	\mathcal{O}_{ee}
	$(ar{f 3}_e,{f 3}_\ell)$	$- y_\varphi^e ^2/(2M_\varphi^2)$	$\mathcal{O}_{\ell e}$
$arphi \sim (1,2)_{rac{1}{2}}$	$(ar{f 3}_d,{f 3}_q)$	$- y_\varphi^d ^2/(6M_\varphi^2)$	${\cal O}_{qd}^{(1)} + 6 {\cal O}_{qd}^{(8)}$
	$(ar{f 3}_q,{f 3}_u)$	$- y_\varphi^u ^2/(6M_\varphi^2)$	$\mathcal{O}_{qu}^{(1)} + 6\mathcal{O}_{qu}^{(8)}$
$\Xi_1 \sim (1,3)_1$	$\bar{6}_{\ell}$	$\left y_{\Xi_1}\right ^2/(2M_{\Xi_1}^2)$	$\mathcal{O}^D_{\ell\ell} + \mathcal{O}^E_{\ell\ell}$
	$({\bf 3}_q,{\bf 3}_\ell)$	$ y_{\omega_1}^{q\ell} ^2/(4M_{\omega_1}^2)$	$\mathcal{O}_{\ell q}^{(1)} - \mathcal{O}_{\ell q}^{(3)}$
(9.1)	$(3_e,3_u)$	$ y^{eu}_{\omega_1} ^2/(2M^2_{\omega_1})$	\mathcal{O}_{eu}
$\omega_1 \sim (3, 1)_{-\frac{1}{3}}$	$\bar{6}_q$	$ y_{\omega_1}^{qq} ^2/(4M_{\omega_1}^2)$	$\mathcal{O}_{qq}^{(1)D} - \mathcal{O}_{qq}^{(3)D} + \mathcal{O}_{qq}^{(1)E} - \mathcal{O}_{qq}^{(3)E}$
	$(ar{f 3}_d,ar{f 3}_u)$	$ y_{\omega_1}^{du} ^2/(3M_{\omega_1}^2)$	${\cal O}_{ud}^{(1)} - 3 {\cal O}_{ud}^{(8)}$
$\omega_2 \sim (3,1)_{rac{2}{3}}$	3_d	$ y_{\omega_2} ^2/M_{\omega_2}^2$	$\mathcal{O}^D_{dd} - \mathcal{O}^E_{dd}$
(9.1)	$(3_e,3_d)$	$ y^{ed}_{\omega_4} ^2/(2M^2_{\omega_4})$	\mathcal{O}_{ed}
$\omega_4 \sim (3,1)_{-\frac{4}{3}}$	3_{u}	$ y^{uu}_{\omega_4} ^2/M^2_{\omega_4}$	$\mathcal{O}^D_{uu} - \mathcal{O}^E_{uu}$
$\Pi_1 \sim (3,2)_{rac{1}{6}}$	$(ar{f 3}_\ell,{f 3}_d)$	$- y_{\Pi_1} ^2/(2M_{\Pi_1}^2)$	${\cal O}_{\ell d}$
П (2 2)-	$(ar{f 3}_\ell,{f 3}_u)$	$-\left y_{\Pi_7}^{\ell u}\right ^2/(2M_{\Pi_7}^2)$	$\mathcal{O}_{\ell u}$
$\Pi_7 \sim (3,2)_{rac{7}{6}}$	$(ar{f 3}_e,{f 3}_q)$	$- y_{\Pi_7}^{qe} ^2/(2M_{\Pi_7}^2)$	\mathcal{O}_{qe}
$\zeta \sim (3,3)_{-\frac{1}{2}}$	$({\bf 3}_q,{\bf 3}_\ell)$	$ y_\zeta^{q\ell} ^2/(4M_\zeta^2)$	$3\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}$
$\zeta \sim (3,3)_{-\frac{1}{3}}$	${\bf 3}_q$	$ y_\zeta^{qq} ^2/(2M_\zeta^2)$	$3\mathcal{O}_{qq}^{(1)D} + \mathcal{O}_{qq}^{(3)D} - 3\mathcal{O}_{qq}^{(1)E} - \mathcal{O}_{qq}^{(3)E}$
0 (0.1)	$(3_u,3_d)$	$ y^{ud}_{\Omega_1} ^2/(6M^2_{\Omega_1})$	$2\mathcal{O}_{ud}^{(1)} + 3\mathcal{O}_{ud}^{(8)}$
$\Omega_1 \sim (6, 1)_{rac{1}{3}}$	$\bar{\boldsymbol{3}}_q$	$ y_{\Omega_1}^{qq} ^2/(4M_{\Omega_1}^2)$	$\mathcal{O}_{qq}^{(1)D} - \mathcal{O}_{qq}^{(3)D} - \mathcal{O}_{qq}^{(1)E} + \mathcal{O}_{qq}^{(3)E}$
$\Omega_2 \sim ({f 6},{f 1})_{-rac{2}{3}}$	6_d	$ y_{\Omega_2} ^2/(4M_{\Omega_2}^2)$	$\mathcal{O}^D_{dd} + \mathcal{O}^E_{dd}$
$\Omega_4 \sim (oldsymbol{6}, oldsymbol{1})_{rac{4}{3}}$	$\boldsymbol{6}_{u}$	$ y_{\Omega_4} ^2/(4M_{\Omega_4}^2)$	$\mathcal{O}^D_{uu}+\mathcal{O}^E_{uu}$
$\Upsilon \sim (oldsymbol{6},oldsymbol{3})_{rac{1}{3}}$	6_q	$ y_\Upsilon ^2/(8M_\Upsilon^2)$	$3\mathcal{O}_{qq}^{(1)D} + \mathcal{O}_{qq}^{(3)D} + 3\mathcal{O}_{qq}^{(1)E} + \mathcal{O}_{qq}^{(3)E}$
I (2.2)	$(ar{f 3}_q,{f 3}_u)$	$- y_{\Phi}^{qu} ^2/(18M_{\Phi}^2)$	$4\mathcal{O}_{qu}^{(1)} - 3\mathcal{O}_{qu}^{(8)}$
$\Phi \sim (8,2)_{rac{1}{2}}$		$- y_{\Phi}^{dq} ^2/(18M_{\Phi}^2)$	$4\mathcal{O}_{qd}^{(1)} - 3\mathcal{O}_{qd}^{(8)}$

Table 1: New scalars (nontrivial flavor irreps): The first column presents the names

Field	Irrep	Normalization	Operator
	8_{ℓ}	$-(g_\mathcal{B}^\ell)^2/(12M_\mathcal{B}^2)$	$3\mathcal{O}^E_{\ell\ell}-\mathcal{O}^D_{\ell\ell}$
	8_{e}	$-(g^e_{\mathcal{B}})^2/(6M^2_{\mathcal{B}})$	\mathcal{O}_{ee}
$\mathcal{B} \sim (1,1)_0$	8_q	$-(g_{\mathcal{B}}^{q})^{2}/(12M_{\mathcal{B}}^{2})$	$3{\cal O}_{qq}^{(1)E}-{\cal O}_{qq}^{(1)D}$
	8_{u}	$-(g_{\mathcal{B}}^{u})^{2}/(12M_{\mathcal{B}}^{2})$	$3\mathcal{O}^E_{uu}-\mathcal{O}^D_{uu}$
	8_d	$-(g_{\mathcal{B}}^{d})^{2}/(12M_{\mathcal{B}}^{2})$	$3\mathcal{O}^E_{dd} - \mathcal{O}^D_{dd}$
$\mathcal{B}_1 \sim (1,1)_1$	$(ar{f 3}_d,{f 3}_u)$	$- g^{du}_{\mathcal{B}_1} ^2/(3M^2_{\mathcal{B}_1})$	$\mathcal{O}_{ud}^{(1)} + 6\mathcal{O}_{ud}^{(8)}$
141 (1.9)	8_q	$-(g_W^q)^2/(48M_W^2)$	$3\mathcal{O}_{qq}^{(3)E}-\mathcal{O}_{qq}^{(3)D}$
$\mathcal{W} \sim (1, 3)_0$	8_{ℓ}	$(g_{\mathcal{W}}^{\ell})^2/(48M_{\mathcal{W}}^2)$	$5\mathcal{O}^E_{\ell\ell} - 7\mathcal{O}^D_{\ell\ell}$
$\mathcal{L}_3 \sim (1,2)_{-rac{3}{2}}$	$(3_e,3_\ell)$	$\left g_{\mathcal{L}_3}\right ^2/M_{\mathcal{L}_3}^2$	$\mathcal{O}_{\ell e}$
1/ (0.1)	$(ar{f 3}_e,{f 3}_d)$	$- g_{\nu_2}^{ed} ^2/M_{\nu_2}^2$	\mathcal{O}_{ed}
$\mathcal{U}_2 \sim (3,1)_{rac{2}{3}}$	$(ar{f 3}_\ell,{f 3}_q)$	$- g_{\mathcal{U}_2}^{\ell q} ^2/(2M_{\mathcal{U}_2}^2)$	$\mathcal{O}_{\ell q}^{(1)}+\mathcal{O}_{\ell q}^{(3)}$
$\mathcal{U}_5 \sim (3,1)_{rac{5}{3}}$	$(ar{f 3}_e,{f 3}_u)$	$- g_{\mathcal{U}_5} ^2/M_{\mathcal{U}_5}^2$	\mathcal{O}_{eu}
$\mathcal{Q}_1 \sim (3,2)_{rac{1}{c}}$	$(3_u,3_\ell)$	$ g^{u\ell}_{\mathcal{Q}_1} ^2/M^2_{\mathcal{Q}_1}$	$\mathcal{O}_{\ell u}$
$\mathfrak{L}_1 \sim (3, 2)_{\frac{1}{6}}$	$(ar{f 3}_d,ar{f 3}_q)$	$2 g_{\mathcal{Q}_1}^{dq} ^2/(3M_{\mathcal{Q}_1}^2)$	${\cal O}_{qd}^{(1)} - 3 {\cal O}_{qd}^{(8)}$
	$(3_d,3_\ell)$	$ g_{\mathcal{Q}_5}^{d\ell} ^2/M_{\mathcal{Q}_5}^2$	$\mathcal{O}_{\ell d}$
$\mathcal{Q}_5 \sim (3,2)_{-rac{5}{6}}$	$(3_e,3_q)$	$ g_{\mathcal{Q}_{5}}^{eq} ^{2}/M_{\mathcal{Q}_{5}}^{2}$	\mathcal{O}_{qe}
	$(ar{f 3}_u,ar{f 3}_q)$	$2 g^{uq}_{\mathcal{Q}_5} ^2/(3M^2_{\mathcal{Q}_5})$	${\cal O}_{qu}^{(1)} - 3 {\cal O}_{qu}^{(8)}$
$\mathcal{X} \sim (3,3)_{rac{2}{3}}$	$(ar{f 3}_\ell,{f 3}_q)$	$-\left g_{\mathcal{X}}\right ^{2}/(8M_{\mathcal{X}}^{2})$	$3\mathcal{O}_{\ell q}^{(1)}-\mathcal{O}_{\ell q}^{(3)}$
$\mathcal{Y}_1 \sim (ar{f 6}, {f 2})_{rac{1}{6}}$	$(ar{f 3}_d,ar{f 3}_q)$	$\left g_{\mathcal{Y}_1}\right ^2/(3M_{\mathcal{Y}_1}^2)$	$2\mathcal{O}_{qd}^{(1)} + 3\mathcal{O}_{qd}^{(8)}$
$\mathcal{Y}_5 \sim (ar{6}, 2)_{-rac{5}{6}}$	$(ar{f 3}_u,ar{f 3}_q)$	$\left g_{\mathcal{Y}_5}\right ^2/(3M_{\mathcal{Y}_5}^2)$	$2\mathcal{O}_{qu}^{(1)} + 3\mathcal{O}_{qu}^{(8)}$
	8 _a	$-(g_G^q)^2/(144M_G^2)$	$11\mathcal{O}_{qq}^{(1)D} - 9\mathcal{O}_{qq}^{(1)E} + 9\mathcal{O}_{qq}^{(3)D} - 3\mathcal{O}_{qq}^{(3)E}$
$\mathcal{G} \sim (8,1)_0$	$8_{u}^{^{1}}$	$(g_G^u)^2/(36M_G^2)$	$3\mathcal{O}^E_{uu}-5\mathcal{O}^D_{uu}$
	8_{d}	$(g_\mathcal{G}^d)^2/(36M_\mathcal{G}^2)$	$3\mathcal{O}^E_{dd} - 5\mathcal{O}^D_{dd}$
$\mathcal{G}_1 \sim (8, 1)_1$	$(ar{f 3}_d,{f 3}_u)$	$\left g_{\mathcal{G}_1}\right ^2/(9M_{\mathcal{G}_1}^2)$	$-4\mathcal{O}_{ud}^{(1)} + 3\mathcal{O}_{ud}^{(8)}$
$\mathcal{H} \sim (8,3)_0$	8_q	$-(g_{\mathcal{H}})^2/(576M_{\mathcal{H}}^2)$	$27\mathcal{O}_{qq}^{(1)D} - 9\mathcal{O}_{qq}^{(1)E} - 7\mathcal{O}_{qq}^{(3)D} - 3\mathcal{O}_{qq}^{(3)E}$

 Table 3: New vectors (nontrivial flavor irreps): The first column presents the names

Field	Irrep	Normalization	Operator
$arphi \sim (1,2)_{rac{1}{2}}$	1	$ \lambda_arphi ^2/M_arphi^2$	\mathcal{O}_{ϕ}
$\Theta_1 \sim (1,4)_{rac{1}{2}}$	1	$\left \lambda_{\Theta_1}\right ^2/(6M_{\Theta_1}^2)$	\mathcal{O}_{ϕ}
$\Theta_3 \sim (1,4)_{rac{3}{2}}$	1	$ \lambda_{\Theta_3} ^2/(2M_{\Theta_3}^2)$	\mathcal{O}_{ϕ}
$\mathcal{S} \sim (1,1)_0$	1	$-\kappa_{\mathcal{S}}^2/(2M_{\mathcal{S}}^4)$	$\mathcal{O}_{\phi\square} - ar{\mathcal{C}}_{\mathcal{S}}\mathcal{O}_{\phi}$
$\Xi \sim ({\bf 1},{\bf 3})_0$	1	$\kappa_\Xi^2/(2M_\Xi^4)$	$-4\mathcal{O}_{\phi D} + \mathcal{O}_{\phi\Box} + \bar{\mathcal{C}}_{\Xi}\mathcal{O}_{\phi} + 2\left[\sum_{f}y_{f}^{*}\mathcal{O}_{f\phi} + \mathrm{h.c.}\right]$
$\Xi_1 \sim (\textbf{1},\textbf{3})_1$	1	$\left \kappa_{\Xi_1}\right ^2/M_{\Xi_1}^4$	$4\mathcal{O}_{\phi D} + 2\mathcal{O}_{\phi \Box} + \bar{\mathcal{C}}_{\Xi_1}\mathcal{O}_{\phi} + 2\left[\sum_f y_f^* \mathcal{O}_{f\phi} + \text{h.c.}\right]$
$\mathcal{B}_1 \sim (1,1)_1$	1	$- g^{\phi}_{\mathcal{B}_{1}} ^{2}/(2M_{\mathcal{B}_{1}}^{2})$	$4(\lambda_{\phi} + C_{\phi 4}^{\mathcal{B}_1})\mathcal{O}_{\phi} - 2\mathcal{O}_{\phi D} + \mathcal{O}_{\phi \Box} + \left[\sum_f y_f^* \mathcal{O}_{f \phi} + \text{h.c.}\right]$
$\mathcal{W}_1 \sim (\boldsymbol{1},\boldsymbol{3})_1$	1	$- g_{\mathcal{W}_1} ^2/(8M_{\mathcal{W}_1}^2)$	$4(\lambda_{\phi} + C_{\phi 4}^{\mathcal{W}_1})\mathcal{O}_{\phi} + 2\mathcal{O}_{\phi D} + \mathcal{O}_{\phi \Box} + \left[\sum_f y_f^* \mathcal{O}_{f \phi} + \text{h.c.}\right]$
$\mathcal{H} \sim (\boldsymbol{8},\boldsymbol{3})_0$	1	$(g_{\mathcal{H}})^2/(96M_{\mathcal{H}}^2)$	$2\mathcal{O}_{qq}^{(3)D} + 3\mathcal{O}_{qq}^{(3)E} - 9\mathcal{O}_{qq}^{(1)E}$

Table 4: Flavor singlets: First six rows are scalars (spin-0) while the last three are vectors (spin-1). The table format is the same as for Tables 1, 2 and 3. The f index in the $\mathcal{O}(y_f)$ terms goes over all three right-handed fields, i.e., $f = \{e, u, d\}$. The flavor indices are suppressed to reduce clutter. Parameters $C_{\phi 4}^X$ are fixed in terms of the normalisation, while $\bar{\mathcal{C}}_X$ are independent. See Appendices C.1 and C.3 for details.

Field	Irrep	# of parameters	Operators
$\mathcal{B} \sim (1,1)_0$	1	$5\mathbb{R}+1\mathbb{C}$	$\mathcal{O}_{\ell\ell}^{D}, \mathcal{O}_{qq}^{(1)D}, \mathcal{O}_{\ell q}^{(1)}, \mathcal{O}_{ee}, \mathcal{O}_{dd}^{D}, \mathcal{O}_{uu}^{D}, \mathcal{O}_{ed}, \mathcal{O}_{eu}, \mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{\ell e}, \mathcal{O}_{\ell d}, \mathcal{O}_{\ell u}, \mathcal{O}_{qe}, \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qd}^{(1)}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{\phi \Box}, \mathcal{O}_{\phi D}, \mathcal{O}_{\phi u}$ $\mathcal{O}_{\phi d}, \mathcal{O}_{\phi e}, \mathcal{O}_{\phi \ell}^{(1)}, \mathcal{O}_{\phi q}^{(1)}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi}$
$\mathcal{W} \sim (1,3)_0$	1	$2\mathbb{R}+1\mathbb{C}$	$egin{aligned} \mathcal{O}^D_{\ell\ell} - 2\mathcal{O}^E_{\ell\ell}, \mathcal{O}^{(3)D}_{qq}, \mathcal{O}^{(3)}_{\ell q}, \mathcal{O}_{\phi}, \mathcal{O}_{\phi D},\ \mathcal{O}_{\phi\square}, \mathcal{O}^{(3)}_{\phi\ell}, \mathcal{O}^{(3)}_{\phi q}, \mathcal{O}_{e\phi}, \mathcal{O}_{d\phi}, \mathcal{O}_{u\phi} \end{aligned}$
$\mathcal{G} \sim (8,1)_0$	1	$3\mathbb{R}$	$\mathcal{O}_{dd}^{D} - 3\mathcal{O}_{dd}^{E}, \mathcal{O}_{uu}^{D} - 3\mathcal{O}_{uu}^{E}, \mathcal{O}_{qq}^{(3)E}, \mathcal{O}_{qu}^{(8)}, \mathcal{O}_{qd}^{(8)}, \\ 2\mathcal{O}_{qq}^{(1)D} - 3\mathcal{O}_{qq}^{(1)E}, \mathcal{O}_{ud}^{(8)}$

Table 5: **Flavor singlets** (exceptions): Three vector (spin-1) fields match at tree-level to dimension-6 SMEFT operators shown in the last column. The corresponding WCs can be parameterised by a number of parameters indicated in the third column. See Appendix C.3 for details.

Significant simplification transpires, even for trivial flavor irreps, upon enforcing $U(3)^5$ symmetry on \mathcal{L}_{BSM} . Flavor singlets can only be either spin 0 or spin 1. In total, 12 such instances are shown in Tables 4 and 5. The former table presents nine straightforward cases, six expressible by a single parameter and three cases comprising a direction plus a free Wilson coefficient for the \mathcal{O}_{ϕ} operator. Remarkably, only three exceptional vector fields necessitate three or more parameters (at most seven) for describing the tree-level matching to dimension-6 SMEFT (Table 5).

In a UV theory featuring multiple new fields (flavor irreps), besides simply aggregating their WCs, nontrivial matching contributions may arise from diagrams involving several BSM fields. All such instances are charted in Appendix D. They involve either two or three new scalars and always match to a single dimension-6 operator at the tree level, \mathcal{O}_{ϕ} .