

INFN

**CKM 2023** 

12th INTERNATIONAL WORKSHOP ON THE CKM UNITARITY TRIANGLE SANTIAGO DE COMPOSTELA 18-22 SEPTEMBER 2023

## Top-quark spin properties at LHC



### Nello Bruscino (INFN Roma)

on behalf of the ATLAS and CMS Collaborations

## Up Charm Top Down Strange Bottom

## Top quark physics



### Why top quarks?

- heaviest known particle, only "bare" quark
- high statistics allows precision tests and search for new physics (Effective Field Theory frameworks)

### Copious production at the LHC (top-factory):

<sup>-</sup> ≈140/fb @13TeV collected in Run 2 by ATLAS...









### tt central-forward charge asymmetry (Actt) happens only at NLO

- gg initiated process remains charge symmetric to all orders
- higher orders interference in qg and q $\bar{q}$ , and EW contributions lead to asymmetries
  - + also BSM physics can lead to enhancements
- challenging to measure at the LHC ( $q\bar{q} \sim 10\%$  of production fraction @13 TeV)
  - + Extremely subtle precent-level (0.6%) effect (one of the most precise SM tests in top physics)

$$A_C^{t\bar{t}} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

 $\Delta |y| = |y(t)| - |y(\overline{t})|$ 

# tt charge asymmetry

arXiv:2208.12095 - Accepted by JHEP

### Extracted from 139/fb @13TeV data using single

### lepton (e/ $\mu$ ) and dilepton channels

- I+jets: resolved+boosted ( $p_T(t) \ge 400 \text{ GeV}$ )

### **Resolved: BDT** to assign the different jets to the

### top systems

- using KLFitter, masses of hadronic top and W, various angular variables
- best combination considered and only events with good reconstruction retained

## **Boosted:** hadronic top reconstructed as a single large-R jet

- mass and  $\tau_{32}$  used to "tag" hadronic tops
- leptonic side reconstructed from the  $E_T^{miss}$ , lepton and a R=0.4 jet

### **Dilepton: small-R jets and exactly 2 light leptons**

 Neutrino Weighting (NW) algorithm to select well reconstructed events





# tt charge asymmetry

arXiv:2208.12095 - Accepted by JHEP

## |Δy| unfolded using a likelihood-based technique called "fully bayesian unfolding"

- inclusive and differential in bins of the  $m_{t\bar{t}}$  and  $\beta_{z,t\bar{t}}$  (absolute longitudinal boost of  $t\bar{t}$  system in the *z*-direction)
- systematic uncertainties are marginalised and can be constrained by the data

### Inclusive charge asymmetry $A_C = (0.68 \pm 0.15)\%$

- in agreement with NNLO QCD + NLO EW predictions
- 4.7 $\sigma$  from no-asymmetry hypothesis
- EFT limits based on the inclusive and  $m_{t\bar{t}}$  results

First evidence for charge asymmetry in pp collisions!



## tt charge asymmetry



> 1.5

 $m_{t\bar{t}}$  [TeV]

### $|\Delta y|$ unfolded using a likeli called "fully bayesian unfo

arXiv:2208.12095 - /

- inclusive and differential β<sub>z,tī</sub> (absolute longitudina the *z*-direction)
- systematic uncertainties can be constrained by th

### Inclusive charge asymmet

- in agreement with NNLO predictions
- 4.7σ from no-asymmet
- EFT limits based on the

**First evidence** 

asymmetry in p



N. Bruscino Top-quark spin properties at LHC CKM 2023 21-Sep-2023

> 400

 $m_{\ell\bar{\ell}}$  [GeV]

## tt charge asymmetry (boosted)

arXiv:2208.02751 - Submitted to PLB

### New CMS measurement of A<sub>C</sub> in I+jets boosted events

(m<sub>tī</sub> >750 GeV)

- in boosted environment qg or qq productions are enhanced → larger A<sub>C</sub>
- top quarks produced with large Lorentz boosts →
  - + non isolated leptons, unlike previous CMS results
  - + overlapping jets
- three hadronic top categories: resolved, semi-resolved and boosted







## tt charge asymmetry (boosted)





## Data unfolded with a binned maximum likelihood fit and compared to theoretical prediction with NNLO QCD and NLO EW corrections

-  $A_C^{\text{meas}} = (0.69^{+0.65}_{-0.69})$  % (error is dominated by the statistical component)

- results are in very good agreement with the SM prediction



# tt+W charge asymmetry

### arXiv:2301.04245



# In t̄tW production, the q̄q' initial state leads to larger $A_{C}$ than in t̄t production

 the W in ttw is radiated from initial qq
 is tate and acts as event polarization, enhancing the asymmetry between the tt

# First measurement of $A_c$ in tte U using 139 /fb of ATLAS data at 13 TeV

- performed in the 3 charged leptons (e or μ) channel (3L)
- signal and control regions (SRs and CRs) defined by requirements on number of jets and b-tagged jets
- dedicated CRs to estimate the non-prompt lepton source from HF/LF decay or γ-conv.
- BDT trained to achieve the best "lepton-top-quark" association (71% efficient)



Odd lepton: always from (anti)top quark Even leptons: need to select the correct one







### Simultaneous fit to the numbers of observed events in the SRs



### At reconstruction level:

$$A_{C}^{\ell\ell} = (-12.3 \pm 13.6 \text{ (stat.)} \pm 5.1 \text{ (syst.)})\%$$

$$A_{CSM}^{\ell\ell} = (-8.4_{-0.3}^{+0.5} \text{(scale)} \pm 0.6 \text{(MC stat.)})\% \text{ from SHERPA}$$
After unfolding at particle level and fiducial phase space:
$$A_{C}^{\ell\ell} = (-11.2 \pm 17.0 \text{ (stat.)} \pm 5.5 \text{ (syst.)})\%$$

$$(A_{CSM}^{\ell\ell} = (-6.3_{-0.4}^{+0.7} \text{(scale)} \pm 0.4 \text{(MC stat.)})\% \text{ from SHERPA}$$

## **Overview of t**t(+X) asymmetries

### ATL-PHYS-PUB-2023-013







# tt spin correlation

Phys. Rev. D 100 (2019) 072002

## In tt production, top quarks produced unpolarised because of QCD parity conservation

- → correlated spins between top pairs
- accessible via  $|\Delta \phi_{\ell \ell}|$ , in dilepton t<del>t</del> decays, no top reconstruction required



## Most recent CMS measurement of top-quark polarisation and $t\bar{t}$ spin correlation in dilepton events at 13 TeV

- Relative lepton directions follow 3x3 matrix C of spin correlation coefficients
- 15 coefficients  $(B_i^{\pm}, C_{ij})$  characterize spin dependence of production
- each coefficient probed by measuring 1D angular distribution at parton level

spin decorrelation *D* measured indirectly by  $\frac{1}{\sigma} \frac{d\sigma}{d\cos\phi_{\ell\ell}} = \frac{1}{2}(1 - D\cos\phi_{\ell\ell})$ 



## tt spin correlation

Phys. Rev. D 100 (2019) 072002



- CMDM:  $-0.24 < C_{tG}/\Lambda^2 < 0.07 \,\text{TeV}^{-2}$  @ 95% C.L
- CEDM:  $-0.33 < C_{tG}^{I}/\Lambda^{2} < 0.20 \text{ TeV}^{-2}$  @ 95% C.L.

[ N. Bruscino | Top-quark spin properties at LHC | CKM 2023 | 21-Sep-2023 ]

 $C_1$ 

 $C_3$ 

 $C_1 - C_2 + C_2$ 

-0.2

-0.1

12

0.4

 $0.13 \pm 0.11 \pm 0.04$ 

 $-0.07 \pm 0.14 \pm 0.02$ 

 $-0.01 \pm 0.08 \pm 0.01$ 

0.3

0.1

0.2

result  $\pm$  (stat+syst)  $\pm$  (theo)

Anomalous coupling





### Wtb properties in $t\bar{t}$ events determined by structure of weak interaction

- W bosons polarised mostly longitudinally (F<sub>0</sub>) or left-handed (F<sub>L</sub>) in the SM (F<sub>0</sub> + F<sub>L</sub> + F<sub>R</sub> = 1)
- sensitive to anomalous Wtb couplings (any significant  $F_R$  = new physics!)



## Measurement performed using 139 /fb of ATLAS data at 13 TeV

- opposite-sign dilepton channel extremely pure in tt
   events (>97%)
- Neutrino Weighting (NW) algorithm to remove events with poorly reconstructed kinematics







## The differential decay rate of top quarks considering the angle $\theta^*$ is given by

 normalized angular distribution of charged lepton decay from the W unfolded to particle level using an iterative Bayesian unfolding (IBU) method



$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{4}\left(1-\cos^2\theta^*\right)F_0 + \frac{3}{8}\left(1-\cos\theta^*\right)^2F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2F_R$$







### At the LHC (pp collisions)...

- EW production: highly polarised top quarks due to V-A nature
- detectable: accessible via angular distributions (in top rest frame)
- spin polarisation: depends upon specific top-/antitop- sample and chosen basis

$${}_{+}P_{i} = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}, \quad \uparrow / \downarrow \text{ w.r.t. } i$$





Fiducial measurement of top polarisation in t-channel with full Run II dataset (139 /fb)

- *template fit:* measurement of top quark and anti-quark polarisations at reco. level within a fiducial region
- <u>unfolding</u>: normalised differential measurements (cosθ<sub>x/y/z</sub>) unfolded at particle level
- EFT interpretation of the unfolded results

### *l*+jets channel and profile likelihood fit of polarisations:

- <u>4 regions</u>: 2 SRs (top, anti-top) + 2 CRs (W+jets,  $t\bar{t}$ )
- <u>6 polarisations</u>  $P(t) = \{P_x^t, P_y^t, P_z^t\}$  and  $P(\overline{t}) = \{P_x^{\overline{t}}, P_y^{\overline{t}}, P_z^{\overline{t}}\}$
- Octant distribution "Q" to fit in SR (cosθ<sub>x</sub> / cosθ<sub>y</sub> / cosθ<sub>z</sub>)







Fiducial measurement of top polarisation in t-channel with full Run II dataset (139 /fb)

- *template fit:* measurement of top quark and anti-quark polarisations at reco. level within a fiducial region
- <u>unfolding</u>: normalised differential measurements (cosθ<sub>x/y/z</sub>) unfolded at particle level
- EFT interpretation of the unfolded results



### *l*+jets channel and profile likelihood fit of polarisations:





### Three normalised angular observables ( $\cos\theta_{x/y/z}$ ) unfolded to particle level

- Iterative Bayesian Unfolding (IBU) employed for deconvolution
- comparisons with different MC predictions at particle level in fiducial region

### EFT interpretation of normalised $\cos\theta_{x/y}$ with morphing technique

- parametric description for EFT operators using minimal number of templates
- focus on  $O_{tW}$  (variables not sensitive to  $O_{\phi Q}$ ,  $O_{qQ}$ )



|                     | $C_t$       | W           | $C_{itW}$    |                          |  |
|---------------------|-------------|-------------|--------------|--------------------------|--|
|                     | 68% CL      | 95% CL      | 68% CL       | 95% CL                   |  |
| All terms           | [-0.3, 0.8] | [-0.9, 1.4] | [-0.5, -0.1] | [-0.8, 0.2]              |  |
| Order $1/\Lambda^4$ | [-0.3, 0.8] | [-0.9, 1.4] | [-0.5, -0.1] | [-0.8, 0.2]              |  |
| Order $1/\Lambda^2$ | [-0.3, 0.8] | [-0.8, 1.5] | [-0.6, -0.1] | $\left[-0.8, 0.2\right]$ |  |



### Three normalised angular observables ( $\cos\theta_{x/y/z}$ ) unfolded to particle level

- Iterative Bayesian Unfolding (IBU) employed for deconvolution
- comparisons with different MC predictions at particle level in fiducial region

### EFT interpretation of normalised $\cos\theta_{x/y}$ with morphing technique

- parametric description for EFT operators using minimal number of templates
- focus on  $O_{tW}$  (variables not sensitive to  $O_{\phi Q}$ ,  $O_{qQ}$ )





### The top quark has come a long way since 1995 (discovery)

- back then: missing quark, similar to other quarks
- today: know that top quark is special



### In precision era, top-quark spin is key to an abundance of different research areas

- so far, Standard Model describes data extremely well
- more results with the Run 2 dataset in the pipeline
- Run 3 (and beyond) promise even larger datasets

### Many more exciting top physics results still to come!







## **Charge asymmetry**

### ATLAS-CONF-2019-026



Measurements reinterpreted in EFT

- C<sup>-</sup> = 4-fermion operator assuming flavour conservation and equal *u-d* type couplings (maps onto axi-gluon)
- theory paper: JHEP03(2011)125

Inclusive and differential results surpass ATLAS+CMS Run I combination

- no large dependence on quadratic terms
- dimension 6 approach is stable and appropriate



Charge asymmetry



### Charge asymmetry (boosted)



## tt+γ charge asymmetry



### $t\bar{t}+\gamma$ has enhanced $q\bar{q}$ initiated production

### → perfect playground for tests of $A_C^{t\bar{t}}$

 enhancement only for events where the photon is radiated by initial state partons (a.k.a. "tt+y production")

### $I+\gamma+jets$ selection with Run II data:

- kinematic likelihood fit (KLFitter) to reconstruct  $t\bar{t}$  system
- Neural Network to separate signal ( $t\bar{t}+\gamma$  prod) vs. backgrounds
  - + "t $\bar{t}$ +y decay" as irreducible background
  - + two regions NN<0.6 and NN>0.6

### Main backgrounds: prompt $\gamma,$ jet- and e-faking $\gamma$

- $t\bar{t}$ +y decay (30%) and prompt-y (15%) estimated with MC
- data-driven e-faking γ (16%) using tag-and-probe Z→ee/eγ events
- data-driven jet-faking  $\gamma$  (7%) using ABCD method ( $\gamma$ -iso and  $\gamma$ -ID)







## tī+γ charge asymmetry Phys. Lett. B 843 (2023) 137848

### Actt extraction by Profile Likelihood Unfolding (PLU)

- $A_C^{t\bar{t}} = -0.003 \pm 0.029 = -0.003 \pm 0.024(stat) \pm 0.017(syst)$
- precision is limited by the statistical uncertainty

Consistent with SM prediction  $A_{C^{t\bar{t}}} = -0.014 \pm 0.001$  (MadGraph NLO)





| Total uncertainty                     | 0.029 |
|---------------------------------------|-------|
| Statistical uncertainty               | 0.024 |
| MC statistical uncertainties          |       |
| Background processes                  | 0.008 |
| $t\bar{t}\gamma$ production           | 0.004 |
| Modelling uncertainties               |       |
| $t\bar{t}\gamma$ production modelling | 0.003 |
| Background modelling                  | 0.002 |
| Prompt background normalisation       | 0.002 |
| Experimental uncertainties            |       |
| Jet                                   | 0.009 |
| Fake-lepton background estimate       | 0.005 |
| $E_{\rm T}^{\rm miss}$                | 0.005 |
| Fake-photon background estimates      | 0.003 |
| Photon                                | 0.001 |
| b-tagging                             | 0.001 |
| Other experimental                    | 0.004 |
|                                       |       |

## tt+y charge asymmetry





| Total uncertainty                     | 0.030 |
|---------------------------------------|-------|
| Statistical uncertainty               | 0.024 |
| MC statistical uncertainties          |       |
| $t\bar{t}\gamma$ production           | 0.004 |
| Background processes                  | 0.008 |
| Modelling uncertainties               |       |
| $t\bar{t}\gamma$ production modelling | 0.003 |
| Background modelling                  | 0.002 |
| Prompt background normalisation       | 0.003 |
| Experimental uncertainties            |       |
| Jet and <i>b</i> -tagging             | 0.010 |
| Fake lepton background estimate       | 0.005 |
| $E_{\mathrm{T}}^{\mathrm{miss}}$      | 0.009 |
| Fake photon background estimates      | 0.004 |
| Photon                                | 0.003 |
| Other experimental                    | 0.004 |

tīγ production

Prompt v

Uncertainty

e-fake y

300 350

m<sub>T</sub>(W) [GeV]

400

|                                | $O_{\rm NN} < 0.6$ | $O_{\rm NN} \ge 0.6$ |
|--------------------------------|--------------------|----------------------|
| $t\bar{t}\gamma$ prod (signal) | $6660 \pm 350$     | $6910 \pm 340$       |
| $t\bar{t}\gamma$ decay         | $14100\pm3100$     | $1900 \pm 560$       |
| h-fake $\gamma$                | $3400 \pm 1400$    | $790 \pm 360$        |
| e-fake $\gamma$                | $6420 \pm 860$     | $1480 \pm 260$       |
| prompt $\gamma$                | $6400 \pm 2000$    | $1300 \pm 400$       |
| lepton fake                    | $410 \pm 110$      | $57 \pm 35$          |
| Total                          | $37400 \pm 4500$   | $12400 \pm 1100$     |
| Data                           | 38527              | 13763                |
|                                |                    |                      |



## ttW charge asymmetry



## ttw charge asymmetry

|                                                          | Preselection               |                                |                            |                             |  |  |
|----------------------------------------------------------|----------------------------|--------------------------------|----------------------------|-----------------------------|--|--|
| $N_\ell \ (\ell = e/\mu)$                                |                            | =                              | 3                          |                             |  |  |
| $p_{\rm T}^{\ell} \; (1^{\rm st}/2^{\rm nd}/3^{\rm rd})$ |                            | $\geq 30  \text{GeV}, \geq 20$ | $GeV, \geq 15 GeV$         |                             |  |  |
| Sum of lepton charges                                    |                            | ±                              | :1                         |                             |  |  |
| $m_{\ell\ell}^{ m OSSF}$                                 |                            | ≥ 30                           | ) GeV                      |                             |  |  |
|                                                          |                            | Region-specifi                 | c requirements             |                             |  |  |
|                                                          | SR-1b-lowN <sub>jets</sub> | SR-1b-highN <sub>jets</sub>    | SR-2b-lowN <sub>jets</sub> | SR-2b-highN <sub>jets</sub> |  |  |
| N <sub>jets</sub>                                        | [2, 3]                     | ≥ 4                            | [2,3]                      | ≥ 4                         |  |  |
| N <sub>b-jets</sub>                                      | = 1                        | = 1                            | ≥ 2                        | ≥ 2                         |  |  |
| $E_{ m T}^{ m miss}$                                     | $\geq 50  \text{GeV}$      | $\geq 50  \text{GeV}$          | -                          | -                           |  |  |
| $N_{Z-\text{cand.}}$                                     | = 0                        |                                |                            |                             |  |  |
| Lepton criteria                                          |                            | T                              | IT                         |                             |  |  |
| $e/\gamma$ ambiguity-cuts                                |                            | satis                          | fy all                     |                             |  |  |
|                                                          | CR-tīZ                     | CR-HF <sub>e</sub>             | CR-HF <sub>µ</sub>         | CR- <i>γ</i> -conv          |  |  |
| $\ell^{1 st/2 n d/3 r d}$                                | eee                        | lle                            | ℓℓµ                        | lle,lel,ell                 |  |  |
| N <sub>jets</sub>                                        | ≥ 4                        | ≥ 2                            | ≥ 2                        | ≥ 2                         |  |  |
| N <sub>b-jets</sub>                                      | ≥ 2                        | = 1                            | = 1                        | ≥ 1                         |  |  |
| $E_{ m T}^{ m miss}$                                     | -                          | < 50 GeV                       | < 50 GeV                   | < 50 GeV                    |  |  |
| $N_{Z-\text{cand.}}$                                     | = 1 = 0 = 0 = 0            |                                |                            |                             |  |  |
| Lepton criteria                                          | TTT                        | TTT                            | TTT                        | TTT                         |  |  |
| $e/\gamma$ ambiguity-cuts                                | satisfy all                | satisfy all                    | satisfy all                | $\geq 1$ fail               |  |  |

|                                   | $\int \Delta A_{\rm c}^{\ell}(t\bar{t}W)$ |
|-----------------------------------|-------------------------------------------|
| Experimental uncertainties        |                                           |
| Jet energy resolution             | 0.013                                     |
| Pile-up                           | 0.007                                     |
| <i>b</i> -tagging                 | 0.005                                     |
| Leptons                           | 0.004                                     |
| $E_{\mathrm{T}}^{\mathrm{miss}}$  | 0.004                                     |
| Jet energy scale                  | 0.0032                                    |
| Luminosity                        | 0.0006                                    |
| MC modelling uncertainties        |                                           |
| $t\bar{t}W$ modelling             | 0.013                                     |
| $t\bar{t}Z$ modelling             | 0.010                                     |
| $\mathrm{HF}_{e/\mu}$ modelling   | 0.006                                     |
| $t\bar{t}H$ modelling             | 0.005                                     |
| Other uncertainties               |                                           |
| $\Delta \eta^{\pm}$ CR-dependency | 0.05                                      |
| MC statistical uncertainty        | 0.019                                     |
| Data statistical uncertainty      | 0.14                                      |
| Total uncertainty                 | 0.15                                      |

#### **Experimental uncertainties** 0.014 Jet energy resolution 0.011 0.008 Jet energy scale 0.004

Leptons

Pile-up

 $E_{\mathrm{T}}^{\mathrm{miss}}$ 

 $\Delta A_{\rm c}^{\ell} (t \bar{t} W)^{\rm PL}$ 

0.0015

| Luminosity                        | 0.0011  |
|-----------------------------------|---------|
| Jet vertex tagger                 | 0.00027 |
| MC modelling uncertainties        |         |
| $t\bar{t}W$ modelling             | 0.022   |
| $t\bar{t}Z$ modelling             | 0.017   |
| $\mathrm{HF}_{e/\mu}$ modelling   | 0.015   |
| Others modelling                  | 0.015   |
| WZ/ZZ + jets modelling            | 0.014   |
| $t\bar{t}H$ modelling             | 0.006   |
| Other uncertainties               |         |
| Unfolding bias                    | 0.004   |
| $\Delta \eta^{\pm}$ CR-dependency | 0.04    |
| MC statistical uncertainty        | 0.027   |
| Response matrix                   | 0.009   |
| Data statistical uncertainty      | 0.17    |
| Total uncertainty                 | 0.18    |

## tt spin correlation

#### Phys. Rev. D 100 (2019) 072002



$$egin{aligned} & ilde{B}_{i}^{\pm} = b_{k}^{\pm}\hat{k}_{i} + b_{r}^{\pm}\hat{r}_{i} + b_{n}^{\pm}\hat{n}_{i}, \ & ilde{C}_{ij} = c_{kk}\hat{k}_{i}\hat{k}_{j} + c_{rr}\hat{r}_{i}\hat{r}_{j} + c_{nn}\hat{n}_{i}\hat{n}_{j} \ &+ c_{rk}(\hat{r}_{i}\hat{k}_{j} + \hat{k}_{i}\hat{r}_{j}) + c_{nr}(\hat{n}_{i}\hat{r}_{j} + \hat{r}_{i}\hat{n}_{j}) \ &+ c_{kn}(\hat{k}_{i}\hat{n}_{j} + \hat{n}_{i}\hat{k}_{j}) + c_{n}(\hat{r}_{i}\hat{k}_{j} - \hat{k}_{i}\hat{r}_{j}) \ &+ c_{k}(\hat{n}_{i}\hat{r}_{j} - \hat{r}_{i}\hat{n}_{j}) + c_{r}(\hat{k}_{i}\hat{n}_{j} - \hat{n}_{i}\hat{k}_{j}). \end{aligned}$$

#### spin decorrelation D

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi).$$

TABLE I. Observables and their corresponding measured coefficients, production spin density matrix coefficient functions, and P and CP symmetry properties. For the laboratory-frame asymmetries shown in the last two rows, there is no direct correspondence with the coefficient functions.

| Observable                                                                                    | Measured coefficient                      | Coefficient function               | Symmetries      |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|-----------------|
| $\cos \theta_1^k$                                                                             | $B_1^k$                                   | $b_k^+$                            | P-odd, CP-even  |
| $\cos \theta_2^{\hat{k}}$                                                                     | $B_2^k$                                   | $b_{\overline{k}}^{\widetilde{-}}$ | P-odd, CP-even  |
| $\cos \theta_1^{\tilde{r}}$                                                                   | $B_1^{\tilde{r}}$                         | $b_r^+$                            | P-odd, CP-even  |
| $\cos \theta_2^r$                                                                             | $B_2^r$                                   | $b_r^-$                            | P-odd, CP-even  |
| $\cos \theta_1^n$                                                                             | $B_1^{\overline{n}}$                      | $b_n^+$                            | P-even, CP-even |
| $\cos \theta_2^n$                                                                             | $B_2^n$                                   | $b_n^-$                            | P-even, CP-even |
| $\cos \theta_1^{k*}$                                                                          | $B_1^{k*}$                                | $b_k^+$                            | P-odd, CP-even  |
| $\cos \theta_2^{\hat{k}*}$                                                                    | $B_2^{\tilde{k}*}$                        | $b_k^{-}$                          | P-odd, CP-even  |
| $\cos \theta_1^{\tilde{r}*}$                                                                  | $B_1^{\tilde{r}*}$                        | $b_r^+$                            | P-odd, CP-even  |
| $\cos \theta_2^{r_*}$                                                                         | $B_2^{r*}$                                | $b_r^-$                            | P-odd, CP-even  |
| $\cos\theta_1^k\cos\theta_2^k$                                                                | $C_{kk}$                                  | $c_{kk}$                           | P-even, CP-even |
| $\cos\theta_1^r\cos\theta_2^r$                                                                | $C_{rr}$                                  | C <sub>rr</sub>                    | P-even, CP-even |
| $\cos \theta_1^{\hat{n}} \cos \theta_2^{\hat{n}}$                                             | $C_{nn}$                                  | $c_{nn}$                           | P-even, CP-even |
| $\cos \theta_1^r \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^r$                           | $C_{rk} + C_{kr}$                         | $c_{rk}$                           | P-even, CP-even |
| $\cos\theta_1^{\bar{r}}\cos\theta_2^{\bar{k}} - \cos\theta_1^{\bar{k}}\cos\theta_2^{\bar{r}}$ | $C_{rk} - C_{kr}$                         | $c_n$                              | P-even, CP-odd  |
| $\cos\theta_1^n\cos\theta_2^r + \cos\theta_1^r\cos\theta_2^n$                                 | $C_{nr} + C_{rn}$                         | $C_{nr}$                           | P-odd, CP-even  |
| $\cos\theta_1^n\cos\theta_2^r - \cos\theta_1^r\cos\theta_2^n$                                 | $C_{nr} - C_{rn}$                         | $c_k$                              | P-odd, CP-odd   |
| $\cos\theta_1^n\cos\theta_2^k + \cos\theta_1^k\cos\theta_2^n$                                 | $C_{nk} + C_{kn}$                         | $c_{kn}$                           | P-odd, CP-even  |
| $\cos\theta_1^n\cos\theta_2^{\bar{k}} - \cos\theta_1^{\bar{k}}\cos\theta_2^{\bar{n}}$         | $C_{nk} - C_{kn}$                         | $-c_r$                             | P-odd, CP-odd   |
| $\cos \varphi$                                                                                | D                                         | $-(c_{kk}+c_{rr}+c_{nn})/3$        | P-even, CP-even |
| $\cos \varphi_{ m lab}$                                                                       | $A^{\text{lab}}_{\cos \varphi}$           |                                    |                 |
| $ \Delta \phi_{\ell\ell} $                                                                    | $A_{ \Delta \phi_{arepsilon arepsilon }}$ |                                    |                 |

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_1^i d \cos \theta_2^j}$ =  $\frac{1}{4} (1 + B_1^i \cos \theta_1^i + B_2^j \cos \theta_2^j - C_{ij} \cos \theta_1^i \cos \theta_2^j),$ 

### **15 observables**

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1^i} = \frac{1}{2} (1 + B_1^i \cos\theta_1^i),$$
  
$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_2^i} = \frac{1}{2} (1 + B_2^i \cos\theta_2^i),$$
  
$$\frac{1}{\sigma} \frac{d\sigma}{dx} = \frac{1}{2} (1 - C_{ij}x) \ln\left(\frac{1}{|x|}\right),$$
  
$$x = \cos\theta_1^i \cos\theta_2^i.$$

$$\frac{1}{\sigma}\frac{d\sigma}{dx_{\pm}} = \frac{1}{2}\left(1 - \frac{C_{ij} \pm C_{ji}}{2}x_{\pm}\right)\cos^{-1}|x_{\pm}|,$$
$$x_{\pm} = \cos\theta^{i}\cos^{j}\theta^{j} \pm \cos\theta^{j}\cos^{j}\theta^{i}$$

## tt spin correlation

#### Phys. Rev. D 100 (2019) 072002

55



TABLE III. Measured coefficients and asymmetries and their total uncertainties. Predicted values from simulation are quoted with a combination of statistical and scale uncertainties, while the NLO calculated values are quoted with their scale uncertainties [3,4]. The NNLO QCD prediction for  $A_{|\Delta\phi_{ee}|}$ , with scale uncertainties, is  $0.115^{+0.005}_{-0.001}$  [69].

| Coefficient                     | Measured           | POWHEGv2                          | MG5_aMC@NLO                       | NLO calculation                       |
|---------------------------------|--------------------|-----------------------------------|-----------------------------------|---------------------------------------|
| $B_1^k$                         | $0.005\pm0.023$    | $0.004^{+0.001}_{-0.001}$         | $0.000^{+0.001}_{-0.001}$         | $4.0^{+1.7}_{-1.2} \times 10^{-3}$    |
| $B_2^k$                         | $0.007\pm0.023$    | $0.006\substack{+0.001\\-0.001}$  | $-0.002\substack{+0.001\\-0.001}$ | $4.0^{+1.7}_{-1.2} 	imes 10^{-3}$     |
| $B_1^r$                         | $-0.023 \pm 0.017$ | $0.002\substack{+0.001\\-0.001}$  | $0.002\substack{+0.001\\-0.001}$  | $1.6^{+1.2}_{-0.9} \times 10^{-3}$    |
| $B_2^r$                         | $-0.010\pm0.020$   | $0.003\substack{+0.001\\-0.001}$  | $0.000\substack{+0.001\\-0.001}$  | $1.6^{+1.2}_{-0.9} 	imes 10^{-3}$     |
| $B_1^n$                         | $0.006\pm0.013$    | $-0.001\substack{+0.001\\-0.001}$ | $0.001\substack{+0.001\\-0.001}$  | $5.7^{+0.5}_{-0.4} 	imes 10^{-3}$     |
| $B_2^n$                         | $0.017\pm0.013$    | $-0.001\substack{+0.001\\-0.001}$ | $0.000\substack{+0.001\\-0.001}$  | $5.7^{+0.5}_{-0.4} 	imes 10^{-3}$     |
| $B_1^{k*}$                      | $-0.016\pm0.018$   | $-0.001\substack{+0.001\\-0.001}$ | $0.000\substack{+0.001\\-0.001}$  | <10 <sup>-3</sup>                     |
| $B_2^{k*}$                      | $0.007\pm0.019$    | $0.001\substack{+0.001\\-0.001}$  | $0.003\substack{+0.002\\-0.001}$  | <10 <sup>-3</sup>                     |
| $B_{1}^{r*}$                    | $0.001\pm0.017$    | $0.000\substack{+0.001\\-0.001}$  | $0.000\substack{+0.001\\-0.001}$  | <10 <sup>-3</sup>                     |
| $B_{2}^{r*}$                    | $0.010\pm0.017$    | $0.001\substack{+0.001\\-0.001}$  | $0.001\substack{+0.001\\-0.001}$  | <10 <sup>-3</sup>                     |
| $C_{kk}$                        | $0.300\pm0.038$    | $0.314\substack{+0.005\\-0.004}$  | $0.325\substack{+0.011\\-0.006}$  | $0.331\substack{+0.002\\-0.002}$      |
| C <sub>rr</sub>                 | $0.081\pm0.032$    | $0.048\substack{+0.007\\-0.006}$  | $0.052\substack{+0.007\\-0.005}$  | $0.071\substack{+0.008\\-0.006}$      |
| $C_{nn}$                        | $0.329\pm0.020$    | $0.317\substack{+0.001\\-0.001}$  | $0.324\substack{+0.002\\-0.002}$  | $0.326\substack{+0.002\\-0.002}$      |
| $C_{rk} + C_{kr}$               | $-0.193 \pm 0.064$ | $-0.201\substack{+0.004\\-0.003}$ | $-0.198\substack{+0.004\\-0.005}$ | $-0.206\substack{+0.002\\-0.002}$     |
| $C_{rk} - C_{kr}$               | $0.057\pm0.046$    | $-0.001\substack{+0.002\\-0.002}$ | $0.004\substack{+0.002\\-0.002}$  | 0                                     |
| $C_{nr} + C_{rn}$               | $-0.004\pm0.037$   | $-0.003\substack{+0.002\\-0.002}$ | $0.001\substack{+0.002\\-0.002}$  | $1.06^{+0.01}_{-0.01} \times 10^{-3}$ |
| $C_{nr} - C_{rn}$               | $-0.001 \pm 0.038$ | $0.002\substack{+0.002\\-0.002}$  | $0.001\substack{+0.003\\-0.002}$  | 0                                     |
| $C_{nk} + C_{kn}$               | $-0.043 \pm 0.041$ | $-0.002\substack{+0.002\\-0.002}$ | $0.003\substack{+0.002\\-0.002}$  | $2.15^{+0.04}_{-0.07} 	imes 10^{-3}$  |
| $C_{nk} - C_{kn}$               | $0.040\pm0.029$    | $-0.001\substack{+0.002\\-0.002}$ | $-0.001\substack{+0.002\\-0.002}$ | 0                                     |
| D                               | $-0.237 \pm 0.011$ | $-0.226\substack{+0.003\\-0.004}$ | $-0.233\substack{+0.004\\-0.006}$ | $-0.243^{+0.003}_{-0.003}$            |
| $A^{ m lab}_{\cos arphi}$       | $0.167\pm0.010$    | $0.161\substack{+0.002\\-0.002}$  | $0.174_{-0.003}^{+0.004}$         | $0.181\substack{+0.004\\-0.003}$      |
| $A_{ \Delta \phi_{\ell \ell} }$ | $0.103\pm0.008$    | $0.125\substack{+0.004\\-0.005}$  | $0.115_{-0.005}^{+0.003}$         | $0.108\substack{+0.009\\-0.012}$      |

TABLE V. Summary of the systematic, statistical, and total uncertainties in the extracted  $t\bar{t}$  spin correlation coefficients and asymmetries. An ellipsis  $(\cdots)$  is shown where the values are <0.0005.

|                       | Uncertainty |          |          |                   |                   |                   |                   |                   |                   |       |                                 |                                |
|-----------------------|-------------|----------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------|---------------------------------|--------------------------------|
| Source                | $C_{kk}$    | $C_{rr}$ | $C_{nn}$ | $C_{rk} + C_{kr}$ | $C_{rk} - C_{kr}$ | $C_{nr} + C_{rn}$ | $C_{nr} - C_{rn}$ | $C_{nk} + C_{kn}$ | $C_{nk} - C_{kn}$ | D     | $A^{\mathrm{lab}}_{\cos arphi}$ | $A_{ \Delta \phi_{\ell \ell}}$ |
| Trigger               | 0.001       | 0.001    |          | 0.002             |                   |                   |                   |                   |                   |       | 0.001                           |                                |
| Lepton ident./iso.    | 0.001       | 0.001    |          | 0.001             |                   |                   |                   |                   |                   |       |                                 |                                |
| Kinematic reco.       |             |          |          |                   |                   |                   |                   |                   |                   |       |                                 |                                |
| Pileup                | 0.002       |          | 0.001    | 0.004             | 0.001             | 0.001             | 0.002             | 0.001             | 0.001             | 0.001 |                                 | 0.001                          |
| b tagging             | 0.004       | 0.001    | 0.002    | 0.005             | 0.001             | 0.001             | 0.001             | 0.001             | 0.001             | 0.001 |                                 |                                |
| JES                   | 0.012       | 0.009    | 0.005    | 0.022             | 0.011             | 0.011             | 0.009             | 0.012             | 0.007             | 0.002 |                                 | 0.001                          |
| Unclust. energy       | 0.001       | 0.001    | 0.001    | 0.004             | 0.001             | 0.001             | 0.002             | 0.001             | 0.001             | • • • |                                 | 0.001                          |
| JER                   | 0.001       | 0.002    | 0.001    | 0.004             | 0.002             | 0.001             | 0.001             | 0.003             | 0.001             | •••   |                                 |                                |
| Scales                | 0.012       | 0.006    | 0.007    | 0.026             | 0.011             | 0.007             | 0.014             | 0.011             | 0.007             | 0.003 | 0.002                           | 0.003                          |
| ME/PS matching        | 0.004       | 0.003    | 0.001    | 0.009             | 0.016             | 0.011             | 0.001             | 0.012             | 0.009             | 0.002 | 0.002                           | 0.004                          |
| Color reconnect.      | 0.005       | 0.013    | 0.006    | 0.013             | 0.011             | 0.014             | 0.017             | 0.009             | 0.008             | 0.002 | 0.001                           | 0.001                          |
| Underlying event      | 0.008       | 0.002    | 0.002    | 0.004             | 0.010             | 0.007             | 0.005             | 0.007             | 0.002             | 0.003 | 0.001                           | 0.001                          |
| b quark fragment.     | 0.014       | 0.002    | 0.005    | 0.017             | 0.001             | 0.001             | 0.001             | 0.002             | 0.001             | 0.003 |                                 | 0.001                          |
| b had. semilep. d.    |             | 0.001    | 0.001    | 0.002             |                   | 0.001             |                   |                   |                   | 0.001 |                                 |                                |
| PDF                   | 0.002       | 0.002    | 0.001    | 0.002             |                   |                   |                   |                   |                   | 0.001 | 0.003                           | 0.001                          |
| Top quark mass        | 0.001       | 0.002    | 0.006    | 0.006             | 0.009             | 0.002             | 0.002             | 0.009             | 0.001             | 0.002 | 0.001                           |                                |
| Top quark $p_{\rm T}$ | 0.008       | 0.011    | 0.005    | 0.019             |                   | 0.001             |                   | 0.001             |                   | 0.004 | 0.003                           | 0.005                          |
| Background            | 0.017       | 0.009    | 0.008    | 0.025             | 0.006             | 0.004             | 0.004             | 0.007             | 0.003             | 0.004 | 0.008                           | 0.002                          |
| Total systematic      | 0.031       | 0.023    | 0.016    | 0.053             | 0.029             | 0.024             | 0.025             | 0.026             | 0.016             | 0.009 | 0.010                           | 0.007                          |
| Data statistical      | 0.018       | 0.019    | 0.010    | 0.029             | 0.029             | 0.024             | 0.025             | 0.025             | 0.020             | 0.006 | 0.003                           | 0.003                          |
| Signal sim. stat.     | 0.007       | 0.007    | 0.004    | 0.011             | 0.011             | 0.009             | 0.009             | 0.010             | 0.008             | 0.002 | 0.001                           | 0.001                          |
| Bkg. sim. stat.       | 0.010       | 0.010    | 0.005    | 0.018             | 0.017             | 0.012             | 0.010             | 0.015             | 0.012             | 0.003 | 0.002                           | 0.002                          |
| Total statistical     | 0.022       | 0.023    | 0.012    | 0.035             | 0.035             | 0.028             | 0.028             | 0.031             | 0.025             | 0.007 | 0.003                           | 0.003                          |
| Total                 | 0.038       | 0.032    | 0.020    | 0.064             | 0.046             | 0.037             | 0.038             | 0.041             | 0.029             | 0.011 | 0.010                           | 0.008                          |

## **Top polarisation**

| $\Delta P_{x'}^t$ | $\Delta P_{x'}^{\bar{t}}$                                                                                                                                                                                                    | $\Delta P_{y'}^t$                                                                                                                                                                                                                                                                                                                           | $\Delta P_{y'}^{\bar{t}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta P_{z'}^t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta P_{z'}^{\bar{t}}$                             |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                   |                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
| $\pm 0.037$       | $\pm 0.051$                                                                                                                                                                                                                  | $\pm 0.010$                                                                                                                                                                                                                                                                                                                                 | $\pm 0.015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 0.061$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 0.061$                                           |
| $\pm 0.016$       | $\pm 0.021$                                                                                                                                                                                                                  | $\pm 0.004$                                                                                                                                                                                                                                                                                                                                 | ±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\pm 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 0.016$                                           |
| ±0.013            | ±0.031                                                                                                                                                                                                                       | $\pm 0.003$                                                                                                                                                                                                                                                                                                                                 | $\pm 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 0.026$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 0.043$                                           |
|                   |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
| ±0.045            | ±0.048                                                                                                                                                                                                                       | $\pm 0.005$                                                                                                                                                                                                                                                                                                                                 | $\pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.025                                                |
| ±0.166            | ±0.185                                                                                                                                                                                                                       | ±0.021                                                                                                                                                                                                                                                                                                                                      | ±0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.130                                                |
| $\pm 0.004$       | $\pm 0.002$                                                                                                                                                                                                                  | < 0.001                                                                                                                                                                                                                                                                                                                                     | ±0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±0.009                                                |
| $\pm 0.015$       | $\pm 0.029$                                                                                                                                                                                                                  | $\pm 0.002$                                                                                                                                                                                                                                                                                                                                 | $\pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 0.014$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 0.026$                                           |
| $\pm 0.008$       | $\pm 0.021$                                                                                                                                                                                                                  | < 0.001                                                                                                                                                                                                                                                                                                                                     | $\pm 0.001$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\pm 0.008$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 0.013$                                           |
| $\pm 0.001$       | $\pm 0.001$                                                                                                                                                                                                                  | < 0.001                                                                                                                                                                                                                                                                                                                                     | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                               |
| $\pm 0.020$       | $\pm 0.024$                                                                                                                                                                                                                  | $\pm 0.008$                                                                                                                                                                                                                                                                                                                                 | ±0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.031                                                |
| ±0.174            | ±0.199                                                                                                                                                                                                                       | ±0.025                                                                                                                                                                                                                                                                                                                                      | ±0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±0.153                                                |
| ±0.017            | ±0.025                                                                                                                                                                                                                       | ±0.011                                                                                                                                                                                                                                                                                                                                      | ±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\pm 0.022$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\pm 0.034$                                           |
|                   | $\begin{array}{c} \Delta P_{x'}^{t} \\ \pm 0.037 \\ \pm 0.016 \\ \pm 0.013 \\ \\ \pm 0.045 \\ \pm 0.166 \\ \pm 0.004 \\ \pm 0.015 \\ \pm 0.008 \\ \pm 0.001 \\ \pm 0.001 \\ \pm 0.020 \\ \pm 0.174 \\ \pm 0.017 \end{array}$ | $\Delta P_{x'}^t$ $\Delta P_{x'}^{\bar{t}}$ $\pm 0.037$ $\pm 0.051$ $\pm 0.016$ $\pm 0.021$ $\pm 0.013$ $\pm 0.031$ $\pm 0.045$ $\pm 0.048$ $\pm 0.166$ $\pm 0.185$ $\pm 0.004$ $\pm 0.002$ $\pm 0.015$ $\pm 0.029$ $\pm 0.008$ $\pm 0.021$ $\pm 0.001$ $\pm 0.001$ $\pm 0.020$ $\pm 0.024$ $\pm 0.174$ $\pm 0.199$ $\pm 0.017$ $\pm 0.025$ | $\Delta P_{x'}^t$ $\Delta P_{x'}^{\bar{t}}$ $\Delta P_{y'}^t$ $\pm 0.037$ $\pm 0.051$ $\pm 0.010$ $\pm 0.016$ $\pm 0.021$ $\pm 0.004$ $\pm 0.013$ $\pm 0.031$ $\pm 0.003$ $\pm 0.045$ $\pm 0.031$ $\pm 0.003$ $\pm 0.045$ $\pm 0.048$ $\pm 0.005$ $\pm 0.166$ $\pm 0.185$ $\pm 0.021$ $\pm 0.004$ $\pm 0.002$ $\pm 0.001$ $\pm 0.005$ $\pm 0.029$ $\pm 0.002$ $\pm 0.008$ $\pm 0.021$ $< 0.001$ $\pm 0.001$ $\pm 0.001$ $\pm 0.008$ $\pm 0.174$ $\pm 0.199$ $\pm 0.025$ $\pm 0.017$ $\pm 0.025$ $\pm 0.011$ | $\Delta P_{x'}^t$ $\Delta P_{x'}^{\bar{t}}$ $\Delta P_{y'}^t$ $\Delta P_{y'}^{\bar{t}}$ $\pm 0.037$ $\pm 0.051$ $\pm 0.010$ $\pm 0.015$ $\pm 0.016$ $\pm 0.021$ $\pm 0.004$ $\pm 0.016$ $\pm 0.013$ $\pm 0.031$ $\pm 0.003$ $\pm 0.006$ $\pm 0.045$ $\pm 0.048$ $\pm 0.005$ $\pm 0.007$ $\pm 0.166$ $\pm 0.185$ $\pm 0.021$ $\pm 0.001$ $\pm 0.004$ $\pm 0.002$ $< 0.001$ $\pm 0.001$ $\pm 0.015$ $\pm 0.029$ $\pm 0.002$ $\pm 0.001$ $\pm 0.003$ $\pm 0.021$ $< 0.001$ $\pm 0.001$ $\pm 0.003$ $\pm 0.024$ $\pm 0.008$ $\pm 0.015$ $\pm 0.174$ $\pm 0.199$ $\pm 0.025$ $\pm 0.048$ $\pm 0.017$ $\pm 0.025$ $\pm 0.011$ $\pm 0.017$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |







EFT operator can contribute to production and/or decay vertex

3 operators that interfere with SM:  $O_{\phi Q}$ ,  $O_{tW}$  and  $O_{qQ}$ 

- four couplings:  $C_{\phi Q}$ ,  $C_{tW}$ ,  $C_{itW}$  and  $O_{qQ}$
- $C_{tW}^* \neq C_{tW} \rightarrow CP$  Violation
- prediction @NLO available: arXiv:1807.03576

### Interpretation of normalized $\cos\theta_{X/Y}$ focuses on $C_{tW}$ and $C_{itW}$

- $O_{\phi Q}$  affects only normalisation
- $\cos\theta_{X/Y}$  not sensitive to  $O_{qQ}$

### Morphing reference: ATL-PHYS-PUB-2015-047

- Morphing works with any choice of templates
- Uncertainty does depend on this choice

|                     | C           | tW          | C <sub>itW</sub> |             |  |  |
|---------------------|-------------|-------------|------------------|-------------|--|--|
|                     | 68% CL      | 95% CL      | 68% CL           | 95% CL      |  |  |
| All terms           | [-0.2, 0.9] | [-0.7, 1.5] | [-0.5, -0.1]     | [-0.7, 0.2] |  |  |
| Order $1/\Lambda^4$ | [-0.2, 0.9] | [-0.7, 1.5] | [-0.5, -0.1]     | [-0.7, 0.2] |  |  |
| Order $1/\Lambda^2$ | [-0.2, 1.0] | [-0.7, 1.7] | [-0.5, -0.1]     | [-0.8, 0.2] |  |  |

### IBU vs. FBU vs. SVD vs. PLU

### Reference: arxiv.org/1201.4612

FBU differs from D'Agostini's iterative unfolding (IBU) despite both using Bayes' theorem.

- In FBU the answer is not an estimator and its covariance matrix, but a posterior probability density defined in the space of possible spectra.
- FBU does not involve iterations, thus does not depend on a convergence criterion, nor on the first point of an iterative procedure, which in IBU is named "prior".
  - + If more than one answers are equally likely, as can happen when the reconstructed spectrum has fewer bins than the inferred one, then FBU reveals all of them, while IBU converges towards some of the possible solutions.
- Regularization is not done by interrupting iterations, but by choosing a prior which favours certain characteristics, such as smoothness.

+ Thus, FBU offers intuition and full control of the regularizing condition, which makes the answer easy to interpret. <u>FBU</u> differs significantly also from <u>SVD unfolding</u>.

- In FBU the migrations matrix is not distorted by singular value decomposition (SVD), therefore FBU assumes the intended migrations model.
- The answer of FBU is not an estimator plus covariance matrix, but a probability density function which does not have to be Gaussian, which is important especially in bins with small Poisson event counts.
- FBU does not involve matrix inversion and computation of eigenvalues, which makes it more stable numerically.
- SVD imposes curvature regularization, while FBU offers the freedom to use different regularization choices. This freedom becomes necessary when the correct answer actually has large curvature, or when the answer has only two bins, thus curvature is not even defined.

<u>PLU</u> is similar to <u>FBU</u> in terms of prior for regularisation, but it involves a Profile Likelihood fit too.