

Higgs CP studies at ATLAS+CMS

12th International Workshop on the CKM Unitarity Triangle (CKM2023)

María Moreno Llácer (IFIC, CSIC-Uni. Valencia), on behalf of ATLAS and CMS Collaborations

49-22 SEDTEMBED 2022

21/09/23

Introduction: Run 2 achievements

• The Higgs boson couplings have been measured by ATLAS and CMS experiments

- Generally agree with the SM predictions
- Precision: ~5% vector bosons (W,Z), ~7-12% heavier fermions (t, b, τ) and ~20% μ
- **- Still room for new physics**

Higgs couplings agree with SM over 3 orders of magnitude in mass!

Introduction: CP violation in the Higgs sector?

- The Higgs boson couplings have been measured by ATLAS and CMS experiments
	- Generally agree with the SM predictions
	- Precision: ~5% vector bosons (W,Z), ~7-12% heavier fermions (t, b, τ) and ~20% μ
	- **- Still room for new physics**
- In the SM, the Higgs boson is predicted as CP-even
- Exploring CP-odd contributions in the Higgs sector
	- Pure CP-odd Higgs boson already ruled out during Run 1
	- Mixture of CP-even and CP-odd still allowed \rightarrow New sources of CP violation ?
	- Check all couplings individually Yukawa and gauge couplings can have different structure

- *CP-odd contributions*
- *- HVV: suppressed with a 1/*L²
- *- Hff: at tree-level*

How to look for CPV in the Higgs sector?

- Rate measurements \rightarrow can not distinguish CP-even / CP-odd
- Measure shape effects on CP-sensitive observables: angles, optimal observables, matrix elements, and others

Studied in production and/or decay

CP parametrisations to probe HVV, Hgg and Hff couplings

CP parameters measured

$$
\sigma_i^{EFT} = \sigma_i^{SM} + \sigma_i^{int} + \sigma_i^{BSM}
$$

\n
$$
\sigma \sim |\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2Re \mathcal{M}_{SM} \mathcal{M}_{CP-odd} + |\mathcal{M}_{CP-odd}|^2
$$

\n
$$
\rho_{Ure} = CP \cdot odd, causing shape changes to only in interference terms\nCP sensitive observables only\nParameters\n• Ratios of cross-sections: $f_{CP}^{Htt} = \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \operatorname{sign}(\tilde{\kappa}_t / \kappa_t) \qquad f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_{j=1,2,3...} |a_j|^2 \sigma_j} \operatorname{sign}(\frac{a_i}{a_1})$
\n• CP-mixing angle α
\n $\kappa_t = k_t \cos \alpha$
\n $\tilde{\kappa}_t = k_t \sin \alpha$
\n• σ^* parameter
\n• $\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2} \tilde{g}_{HWW} = \frac{g}{2m_W} \tilde{d}$
\n• $\frac{\overline{g}_{WW}}{\sigma_{WW} \sigma_{W/W} \sigma_{W/W} \sigma_{W/W} \sigma_{W/W}}{\sigma_{WW} \sigma_{W/W} \sigma_{W/W} \sigma_{W/W}} \frac{\overline{g_{WW}}}{\sigma_{WW} \sigma_{W/W} \sigma_{W/W}} \frac{\overline{g_{WW}}}{\sigma_{W} \sigma_{W/W} \sigma_{W/W}} \frac{\overline{g_{WW}}}{\sigma_{W} \sigma_{W/W} \sigma_{W}} \frac{\overline{g_{WW}}}{\sigma_{W} \sigma_{W/W} \sigma_{W}} \frac{\overline{g_{WW}}}{\sigma_{W} \sigma_{W}} \frac{\overline{g_{W}}}{\sigma_{W} \sigma_{W/W} \sigma_{W}} \frac{\overline{g_{W}}}{\sigma_{W} \sigma_{W}} \frac{\overline{g_{W}}}{\sigma_{W} \sigma_{W} \sigma_{W}} \frac{\overline{g_{W}}}{\sigma_{W} \sigma_{W} \sigma_{W}} \frac{\overline{g_{W}}}{\sigma_{W} \sigma_{W}} \frac{\overline{g_{W}}}{\sigma_{W} \sigma_{W}} \frac{\overline{$
$$

LHC Run2 results testing the CP nature of the Higgs boson

HVV coupling: VBF H→**WW* (ATLAS)**

- leptonic W decays (trigger), select 1 DF OS pair
- 2 BDTs to enhance S/B: select VBF, reject top+VV
	- exploit VBF topology using *mjj* and *Δyjj*
	- bin SRs in both classifier outputs

- no deviation wrt. SM found

- independent ggF CR using third BDT
- profile LH to unfold data to particle-level for 13 observables, among which **"signed Δɸjj**" is sensitive to CP
- measure **3 CP-odd operators: cHB˜, cHW˜B** and **cHW˜** (Warsaw basis)
	- **ATLAS** Exp. lin. Exp. lin.+quad. do^{fid}/d⊿¢_{, [}fb/rad] **ATLAS** Data Data Total Unc. \sqrt{s} = 13 TeV, 139 fb⁻¹ \sqrt{s} = 13 TeV, 139 fb⁻¹ \rightarrow Obs. lin. \rightarrow Obs. lin.+quad. SM (Powheg+Pythia8) $c_{\hat{H}} = -0.63$ (lin.) 0.8 $VBF H \rightarrow WW^* \rightarrow e\nu\mu\nu$ $\frac{16}{16}$ =-0.63(lin.+quad.) $c_{\rm{Hd}}^{\rm{}}$ [$\times 10^{-1}$] $_{\text{e}}$ =-1.17(lin.) $E_{H\tilde{W}B}^{\text{HWB}}$ =-1.17(lin.+quad.) $c_{H\tilde{W}}^{HWB}$ = -1.09(lin.) $c_{\text{H}_{\text{U}}}$ [\times 10⁻¹] 0.6 $c_{H\tilde{W}}^{HW}$ =-1.09(lin.+quad.) C_{H01} [\times 10⁻¹] $0²$ $\mathbf{c}_{\mathsf{Hq3}}$ $c_{H\widetilde{B}}$ [\times 10⁻¹] 0.2 c_{HR} [\times 10⁻¹ $C_{\hat{H}^{\hat{M}/R}}$ $[\times 10^{-1}]$ c_{HWB} [\times 10⁻¹] Pred. / Data 1.5 $C_{H\widetilde{M}}$ C_{HW} 2 3 -2 -1 -3 Ω $\varDelta\phi_{\scriptscriptstyle\rm{ii}}$ [rad] -3 \mathcal{P} 3 -2 O Parameter value

21/09/23 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

arXiv:2304.03053

Δɸjj

HVV coupling: VBF H→γγ (ATLAS)

Phys. Rev. Lett. 131 (2023) 061802

• CP-admixture in HVV couplings probed using matrix element-based **optimal observables (***OO)*

$$
\mathcal{O}\mathcal{O} = \frac{2 \mathcal{R}(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2} \qquad \qquad x_{1,2}^{\text{reco}} = \frac{m_{Hjj}}{\sqrt{s}} e^{\pm y_{Hjj}}
$$

- calculated event-by-event in HAWK using reco. jets and Higgs decay products

- **captures full phase space information**, independent of decay mode
- symmetric and centered at zero in SM, while asymmetric in case of CP violation

Selection and strategy

- 2 *tight* identified & isolated photons + 2 jets with |*ηjj*| > 2
- Train 2 BDTs to separate VBF/ggF and VBF/continuum background (y, y) and ji)
- Define 3 SRs (TT, LT, TL) with plane of both BDT scores

HVV coupling: VBF H→γγ (ATLAS)

 $2 \times \Delta NLL$

25

20

ATLAS

 \sqrt{s} = 13 TeV, 36 - 139 fb¹

• Signal extracted by combined maximum LH fit of the m_{γ} spectrum

in each *OO* bin (6 bins per $SR \rightarrow 18$ bins)

• CP sensitivity using the shape of the observable (VBF normalisation free floated in the fit)

• Derive constraints for **d^o** and **1 CP-odd op. cHW^{** \sim **} (Warsaw basis)** (d^{\sim} combined with H $\rightarrow \tau\tau$)

Phys. Rev. Lett. 131 (2023) 061802

Exp. Comb

 \cdot Exp. H \rightarrow $\gamma\gamma$ - Obs. H \rightarrow $\gamma\gamma$

 \cdots Exp. $H \rightarrow \tau\tau$ - Obs. $H \rightarrow \tau\tau$

HVV coupling: VBF H→**ZZ***→**4ℓ (ATLAS)**

- 4 *loose* identified & isolated leptons (pairing by flavour and mass)
- Main bkg.: VV
- Define two *OO***s** to probe CP-odd component: for production (VBF enriched) and for decay (inclusive)
- 3-class NN trained to enhance the VBF purity \rightarrow 4 VBF SRs defined with NN output

- the 4-momenta of the four decay leptons (in case of decay)

21/09/23 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

arXiv:2304.09612

ZZ* CR

Inclusive SR

VRF

SR 1-4

VBF-depleted

Region

ATLAS

HVV coupling: VBF H→**ZZ***→**4ℓ (ATLAS)**

 $c_{H\tilde{W}B}$

 5 $ATLAS$

 $H \rightarrow ZZ^* \rightarrow 4I$

 \sqrt{s} = 13 TeV, 139 fb⁻¹

arXiv:2304.09612

Ohe Roet Fi

 $Obs68%$ CL Obs 95% CL

Exp 68% CL. $Fixn$ 95% CL

- Maximum LH fit performed for **3 CP-odd couplings** in Warsaw and Higgs basis, and for **d˜**
- Different CP-odd hypothesis are tested \rightarrow 3 types of fits:
	- Production \rightarrow CR(ZZ, VBF-dep)+SR(VBF1-4)
	- $-$ Decay \rightarrow CR(ZZ)+SR(inclusive)
	- $-$ Combined \rightarrow CR(ZZ)+SR(VBF-dep, VBF1-4)
- Coupling parameters are scanned individually and in 2D

HVV coupling from on- and off-shell events with ZZ (CMS)

- Off-shell production rate in SM: ~10% of total cross-section
- Recently, both ATLAS and CMS have reported first **evidence of off-shell Higgs production in ZZ channel**
- CP-odd contributions \rightarrow distinct kinematics in off-shell region
- More significant in VBF production mode

HVV coupling from off-shell events with ZZ→**4l+2l2**n **(CMS)**

HVV coupling in VBF/ggH/VH with H→ττ (CMS)

Hgg and Htt in VBF/ggH/VH with H→tt **(CMS)**

most stringent constraints in Hgg

Hττ coupling: H→ττ (ATLAS)

Hττ coupling: H→ττ (ATLAS)

- Use $\tau_{\text{lep}}\tau_{\text{had}}$ and $\tau_{\text{had}}\tau_{\text{had}}$ final states,
- 2 VBF-enriched (with BDTs) and 2 ggH-enriched regions (cut-based)
- \bullet SRs and Z CR defined by $\mathsf{m}_{\mathsf{r}\mathsf{t}}^{}$ ^{MMC}
- Define high, medium, low regions depending on properties of decay products
- Generate different CP-mixed templates using TauSpinner
- Maximum LH fit performed for all regions to extract:

```
\phi_z = 9 \pm 16^{\circ} (0\pm 28^{\circ} exp.)
Pure Htt CP-odd excluded @ 3.4s
                                                 quite similar to CMS results
```
• Statistically limited, main systematic uncertainties from jets

Eur. Phys. J. C 83 (2023) 563

Htt coupling: ttH using several decay modes (CMS)

JHEP 07 (2023) 092

Htt coupling: ttH with H→**bb (ATLAS)**

 550.04

 0.03

 0.02

 0.0°

 $pp @ \sqrt{s} = 13$ TeV

MadGraph5 aMC@NLO Rec. w/truth-match

 -0.5

- Explore 1 ℓ +jets (also boosted region) and 2 ℓ channels with 4b in final state
- Main bkgs.: tt+bb
- Train MVAs to reconstruct Higgs/top from jets and to categorize events
- Define CP-sensitive observables per region:
	- dedicated CP-observables for 1 ℓ (resolved) and 2 ℓ defined with top quark kinematic information: b_2 and b_4

$$
b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{p_1^z p_2^z}{|\vec{p}_1||\vec{p}_2|}
$$

 $-\Delta$ η_{*ιι*} in 2 ℓ

- BDT for boosted region for CP-even/odd separation
- Extract mixing angle $\boldsymbol{\phi}_t (\alpha)$ and $\boldsymbol{\kappa}_t$

• Results limited by syst. unc.

Pure Htt CP-odd disfavoured at 1.2s

21/09/23 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

arXiv:2303.05974

K-S test (tīH, tīA) = 0.213

 0.5

TH TTA TTbb

Summary

- Understanding the Higgs boson's CP properties is a crucial aspect in particle physics today

- ATLAS and CMS have looked for BSM contributions and set limits on CP anomalous couplings in the Higgs boson interactions with vector bosons (HVV), gluons (Hgg), and fermions (Hff) - Results are limited by statistical unc., and consistent with SM so far

- Purely CP-odd fermionic and bosonic Higgs couplings already excluded, but admixtures still possible
- Need to keep exploring CP violation in Higgs couplings
- A huge improvement is expected with more data from upcoming future LHC runs \odot
- For the moment, neglecting effect of operators on backgrounds...

(image: DESY/designdoppel)

Discussions between theorists and experimentalists are very much appreciated !

THANKS FOR YOUR ATTENTION

maria.moreno.llacer@cern.ch

Work produced with the support of ASFAE/2022/010 project (Generalitat Valenciana) and LEO22-1-603 Leonardo Grant for Researchers in Physics (BBVA Foundation)

Indirect probes from EDMs

Htt coupling: ttH with H→**bb (ATLAS)**

CP interference tH

WH

$$
N_{t\bar{t}\,H}(k^{\prime}_t,\alpha)=k^{\prime 2}_{t}c^2_{\alpha}N_{\mathrm{CP-even}}\!+k^{\prime 2}_{t}s^2_{\alpha}N_{\mathrm{CP-odd}}
$$

$$
N_{tH}(k_{t}^{\prime},\alpha)=A\ k_{t}^{\prime 2}c_{\alpha}^{2}+B\ k_{t}^{\prime 2}s_{\alpha}^{2}+C\ k_{t}^{\prime}c_{\alpha}+D\ k_{t}^{\prime} s_{\alpha}+E\ k_{t}^{\prime 2}c_{\alpha} s_{\alpha}+F
$$

CP interference tH and WH

arXiv:2303.05974 arXiv:2303.05974

Substructure of hadronic t**-lepton decays**

CP discriminant: ϕ_{CP}

(angle between the τ decay planes in the Higgs rest frame)

 \rightarrow The mixing angle $\phi_{\tau\tau}$ can be extracted by fitting this function:

$$
\tfrac{d\Gamma}{d\phi_{\rm CP}} \propto \cos(\phi_{\rm CP} - 2\phi_{\tau\tau})
$$

Event reconstruction:

Dedicated algorithms and MVAs to reconstruct τ_h and distinguish its decay mode Several channels (μ,π,ρ, a_1 ^{1pr}, a_1 ^{3pr})×(π,ρ, a_1 ^{1pr}, a_1 ^{3pr}) τ planes can't be reconstructed exactly \rightarrow use approximations

Hττ coupling structure

□ Higgs decay probability $(\beta_\tau = 1)$:

$$
\Gamma_{h \to \tau^-\tau^+} \sim 1 - \vec{s}_z^{\, -} \vec{s}_z^{\, +} + \cos(2\phi_h)(\vec{s}_T^{\, -} \vec{s}_T^{\, +}) - \sin(2\phi_h)[(\vec{s}_T^{\, -} \times \vec{s}_T^{\, +}) \cdot \hat{k}^{\tau^-}]
$$
\n
$$
\Gamma
$$

- $\vec{s}_{z,T}^{\pm}$ longitudinal, transverse vectors of τ^{\pm} spin in its rest frame with respect to $\hat{k}^{\tau^-} = \hat{e}_z$
- \Box Higgs CP information encoded in the transverse component

$$
\Box \quad \frac{1}{\Gamma} \frac{d\Gamma(h \to \pi^+ \pi^- + 2\nu)}{d\varphi_{CP}^*} = \frac{1}{2\pi} \left[1 - \frac{\pi^2}{16} \cos(\varphi_{CP}^* - 2\phi_h) \right]
$$

- $2\phi_h$ can be determined \Box from the shift of the fitted φ_{CP} distribution with respect to the red curve for which $\phi_h = 0$.
- Precision on ϕ_h depends on \Box the number of events and the size of the amplitude

Higgs CP

• With all final state particles reconstructed, we can perform a Matrix Element based analysis of the underlying Higgs CP mixing angle Φ . The Higgs decay amplitude can be expressed as

$$
|\mathcal{M}|^2 \propto A + B\cos(2\phi) + C\sin(2\phi),
$$

$$
\propto I_1 \cos^2(\phi) + I_2 \sin(\phi) \cos(\phi) + I_3 \sin^2(\phi)
$$

- Two observables can be reconstructed per event for the CP test
	- Optimal Observable (M. Davier et. al, Phys. Lett. B306,1993, 411): $OO = I_2/I_1$ $\frac{1}{2}$
	- ME angle $\Delta\Phi_{\text{\tiny MF}}$, defined as 參

$$
|\mathcal{M}|^2 \propto A + \sqrt{B^2 + C^2} \cos(\Delta \phi_{ME} - 2\phi)
$$

$$
\cos(\Delta \phi_{ME}) = \frac{B}{\sqrt{B^2 + C^2}}, \quad \sin(\Delta \phi_{ME}) = \frac{C}{\sqrt{B^2 + C^2}}
$$

At low mixing angle values, the two perform similarly, while in high values of Φ , $\Delta \Phi_{\text{ME}}$ is better

CP test in $H \rightarrow \tau \tau$ decay

• CP-odd Yukawa coupling can enter the Lagrangian at dim-4, thus sensitive at tree-level rather than with the dim-6 operators in HVV

 Φ is the mixing angle. Φ =0 $-g_{\tau}(\cos \phi \overline{\tau} \tau + \sin \phi \overline{\tau} i \gamma_5 \tau) h$ $(\Phi = \pi/2)$ means SM (CP odd)

• CP of H_T coupling can be distinguished by the transverse tau spin correlations

$$
\Gamma(H, A \to \tau^- \tau^+) \sim 1 - s_z^{\tau-} s_z^{\tau+} \pm s_{\tau}^{\tau^-} s_{\tau}^{\tau^+}
$$

• For example, with the $\tau \rightarrow \pi \nu$ decay, one can look at the angle between tau decay planes to extract Φ :

$$
\frac{d\Gamma(h \to \tau\tau \to \pi^+\pi^- + 2\nu)}{d\phi_{CP}} \propto 1 - \frac{\pi^2}{16} \cos(\phi_{CP} - 2\phi)
$$

• It is experimentally challenging because the neutrinos are not reconstructed

CP test in $H \rightarrow \tau \tau$ decay

• There are two methods to extract CP from $H\rightarrow \tau\tau$ decay:

Impact Parameter (IP) method:

- Approximately reconstruct the tau decay plane from its leading track and IP
- Best for the $\tau \rightarrow \pi \nu$ decay. The analyzing power is compromised for other tau decays

Using the $\tau \rightarrow \rho v \rightarrow \pi^{\pm} \pi^0 v$ decay.

- The tau decay plane can be approximately reconstructed by the track and neutral pion
- However, the relative energy of π^{\pm} , π^0 \blacksquare need to be classified in order to maximize the analyzing power
- In order to use the two methods, the tau decay modes (substructure) need to be well differenciated (next few slides)

A few extra references: EPJC 74 (2014) 3164, Phys. Rev. D88 076009, Phys. Lett. B579 (2004) 157, Phys. Lett. B543 (2002) 227

29

Is the top-Higgs coupling a pure scalar interaction ?

$J^{CP} = 0^{++}$?

Phys.Rev.Lett.125(2020)061802

No deviations found in CP properties of the Higgs couplings to gauge bosons *Caveat: in those, CP-odd contributions enter only via higher-order operators*

NEW: pseudoscalar admixture directly tested in top-Higgs interaction using ttH/tH events with H→gg

Is the top-Higgs coupling a pure scalar interaction ?

$J^{CP} = 0^{++}$?

 9 F

No deviations found in CP properties of the Higgs couplings to gauge bosons

Caveat: in those, CP-odd contributions enter only via higher-order operators

NEW: pseudoscalar admixture directly tested in top-Higgs interaction using ttH/tH events with H→gg

$$
\mathcal{L}_{t} = -\frac{m_{t}}{v} (\kappa_{t} \bar{t} t + i \tilde{\kappa}_{t} \bar{t} \gamma_{5} t) H \qquad \text{SM: } (\kappa_{t}, \tilde{\kappa}_{t}) = (1, 0) \qquad \kappa_{t} = k_{t} \cos \alpha
$$
\n
$$
\frac{1 \text{D fit: } \text{CP mixing angle } \alpha}{2 \text{D fit: } k_{t} \cos \alpha \text{ vs } k_{t} \sin \alpha}
$$
\n
$$
\text{Expected event yields in each analysis region}
$$
\n
$$
\text{CP-even (SM)} = \frac{\sum_{\substack{\text{R}} \text{P}} |t|}{\sum_{\substack{\text{A} \text{T} \text{AB} \\ \text{B} \\ \text{B} \\ \text{B} \\ \text{C}}}} \sum_{\substack{\text{a} \text{P} \\ \text{S} \\
$$

21/09/23 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

Phys.Rev.Lett.125(2020)061802

Is the top-Higgs coupling a pure scalar interaction ?

$J^{CP} = 0^{++}$?

No deviations found in CP properties of the Higgs couplings to gauge bosons

Caveat: in those, CP-odd contributions enter only via higher-order operators

NEW: pseudoscalar admixture directly tested in top-Higgs interaction using ttH/tH events with H→gg

$$
\mathcal{L}_t = -\frac{m_t}{v} \left(\kappa_t \bar{t} t + i \tilde{\kappa}_t \bar{t} \gamma_5 t \right) H \qquad \text{SM: } (\kappa_t, \tilde{\kappa}_t) = (1, 0) \qquad \begin{aligned} \kappa_t &= k_t \cos \alpha \\ \tilde{\kappa}_t &= k_t \sin \alpha \end{aligned}
$$
\n
$$
\text{AD fit: } \text{CP mixing angle } \alpha
$$
\n
$$
\text{AD fit: } k_t \cos \alpha \text{ vs } k_t \sin \alpha
$$
\n
$$
\text{AD fit: } \begin{aligned} \n\text{AD} &= \frac{|\tilde{\kappa}_t|^2}{|\kappa_t|^2 + |\tilde{\kappa}_t|^2} \text{ sign}(\tilde{\kappa}_t / \kappa_t) \n\end{aligned}
$$

21/09/23 María Moreno Llácer - Higgs CP studies at ATLAS+CMS

Phys.Rev.Lett.125(2020)061802