VLQ (Vector-Like Quarks) ATLAS & CMS

Dalia Lucero Ramírez Guadarrama

on behalf of the ATLAS & CMS Collaborations

1 Vector-Like Quarks

Vector-Like Quarks

- Left and right-handed chiralities transform in the same way under the SM gauge group.
- O Decay to qZ, qW or qH where q = { t, b }

Pair production

Vector-Like Quarks X, Y, T & B

Single production

- Dependent on qQ coupling (constraints from flavor physics and EW precision tests)
- Becomes dominant at high energies

Pair Production

$T \overline{T} \& B\overline{B}$ production

2212.05263

O For masses of the VLQs above 800 GeV

\bigcirc Branching Ratios \mathscr{B} :

- T: $\mathscr{B}(Zt, Ht, Wb) \approx (0.25, 0.25, 0.5)$
- B: \mathscr{B} (*Zb*, *Hb*, *Wt*) ≈ (0.25, 0.25, 0.5)
- 🗘 Final state signature:
 - High missing transverse momentum $E_{\tau}^{\text{miss}} > 250 \text{ GeV}$
 - One lepton ℓ (e or μ) (veto for a second lepton)
 - At least 4 jets including a b-tagged jet

O Dominant Bkg: $t t^{-}$ and W+jets

- "Others": $t t^-$ H, tWZ and Z+jets
- O Neural Networks (NN) covering sections of the ${\mathscr B}$
 - plane
 - For TT 4 NN: (0.8, 0.1, 0.1), (0.2, 0.4, 0.4), (0.4, 0.1, 0.5), (0.4, 0.5, 0.1).
 - For BB 3 NN: (0.1, 0.1, 0.8), (0.4, 0.1, 0.5), and (0.1, 0.4, 0.5).

\bigcirc more sensitive to T' \rightarrow Zt, B' \rightarrow Wt

O Systematic Uncertainties

Resolution and scale of:

- O tt⁻ bkg
- O Jet mass
- Efficiency of lepton identification, isolation, reconstruction and energy.

$T \overline{T} \& B\overline{B}$ production

2212.05263

• Expected and observed upper limits on the signal cross-section

VLQ	Scenario	Exp. limit [TeV]	Obs. limit [TeV]
Т	$\mathcal{B}(T \to Zt) = 100\%$	1.45	1.47
Т	singlet	1.33	1.26
Т	(T, B) or (X, T) doublet	1.41	1.41
В	singlet	1.30	1.33
B/X	$\mathcal{B}(B/X \to Wt) = 100\%$ or $(T, B)/(X, T)$ doublet	1.42	1.46
T/B/X	(T, B) or (X, T) doublet, mass degenerate	1.56	1.59

$T \overline{T} \& B\overline{B}$ production

- C Expected and observed mass limits as a function of the T' and B' branching ratios
- The highest sensitivity is found in the regions near
 - $\bigcirc \mathscr{B}(T' \rightarrow Zt) = 100\%$
 - O ℬ(B'→ Wt) = 100%
- The strongest lower limits on the masses are 1.59 TeV corresponding to the weak-isospin doublet model
- 1.47 TeV (1.46 TeV) for exclusive T->Zt (B/X->Wt) decays
- Lower limits on the T and B quark masses are derived for all possible branching ratios.

2212.05263

$B \ \overline{B} \ production$ (full hadronic and leptonic)

50 GeV

lata - bkgd bkgd <u>B2G-20-014</u>

O For masses of the VLQs from 1000 to 1800 GeV

- \bigcirc Branching Ratios \mathscr{B} :
 - Leptonic: B (Zb, Hb, Wt)
 - O Hadronic: $\mathscr{B}(Zb, Hb)$
- Fully hadronic category:
 - At least 4 (<=6) AK4 jets $P_T > 50 \text{ GeV} |\eta| < 2.4, H_T > 1350 \text{ GeV}$
 - No isolated e or μ P_T > 50 GeV
 - Bkg: SM jets produced through the strong interaction (QCD multijet events).
- O Leptonic category:
 - At least 3 (<=5) AK4 jets $P_T > 50$ GeV and $|\eta| < 2.4$
 - O At least one pair of leptons 80 < mℓ < 102 GeV</p>
 - Bkg: Drell-Yan dilepton production in association with jets
- O Systematic uncertainties:
 - Integrated luminosity, trigger, dilepton Z boson efficiency, scale factors...

$B \overline{B} production$ (full hadronic and leptonic)

B2G-20-014

C Expected and observed limits on the cross section at 95% CL

• Expected exclusion limits on the VLQ mass at 95% CL as a function of the branching fractions

The limits on the VLQ mass have been increased from 1390 to 1540 GeV in the 100% B->bZ doublet case. These represent the current world best limits on B VLQs in pair production.

³ Single Production

T'→ Zt (multileptonic)

2307.07584

2307.07584

19/09/2023

• The strongest exclusion is observed for singlet representation with $\xi_{\rm w}$ approx 0.5 where masses up to 1975 GeV are excluded at relative decay width of $\Gamma_{\tau}/M_{\tau}=0.5$ for the top partner.

T'→ Zt (multileptonic)

Observed and expected limits at 95% CL on the top partner coupling as a function of the T mass

$T' \rightarrow Ht / Zt$

Events / 40 GeV

B2G-19-001

• For masses of the VLQs from 600 - 1200 GeV

\bigcirc Branching Ratios \mathscr{B} :

- T': $\mathscr{B}(Zt, Ht, Wb) \approx (0.25, 0.25, 0.5)$
- O Final state signature:
 - 5 jets, single production 2 additional jets
 3 of them b-jets
 - P_T > 400 GeV (2016)
 - P_T > 300 GeV (2017 & 2018)
 - m_{τ} up to 700 GeV (low-mass selection) m_{τ} above 800 GeV (high-mass selection)
- 🔿 Main Bkg process:
 - 🔿 multijet
 - 🔿 🛛 tt+ jets
- O Systematic Uncertainties
 - O Trigger efficiency
 - Jet energy and resolution uncertainties
 - b tagging efficiency scale factor for jets
- O Invariant mass reconstructed from 5 jets is used as the main discriminating variable

C Expected and Observed 95% CL upper limits on the cross-section for associated production with a b for final states tHbq and tZbq, for T masses from 600 - 1200 GeV.

• Excess in the tH final state found in [1909.04721], is not observed with a larger dataset. The limits are stronger than those in the previous search by at least a factor of three.

Conclusions

O Several studies were performed by ATLAS and CMS

No significant deviations from the SM predictions are observed Mass ranges have been excluded at 95% CL.

O Many more searches in other decay channels are in progress

- The search of VLQs conducted by ATLAS & CMS continues to explore, improve and innovate for all the possible decay channels
- This is just the tip of the iceberg. Both ATLAS and CMS have huge programs on searches of VLQs.

Conclusions

Several studies were performed by ATLAS and

No significant deviations from the SM predict Mass ranges have been excluded at 95% CL.

🔾 Many more searches in other decay channels 🔓

• The search of VLQs conducted by ATLAS & CN explore, improve and innovate for all the pose channels

• This is just the tip of the iceberg. Both ATLAS huge programs on searches of VLQs.

Overview of CMS B2G Results

008/

Conclusions

12th International Workshop on the CKM Unitarity Triangle

Hank-

- Low mass requirements are chosen to avoid distorting the five-jet invariant mass distribution and producing artificial peaks.
- The five-jet invariant mass distribution in the 2M1L region after the high-mass and low-mass selections in 2018 dataset.
- The low-mass selection results in a mass distribution that is smoothly falling, unlike the high-mass selection.

$T' \rightarrow Ht (H \rightarrow \gamma \gamma)$

For masses of the VLQs from 600 - 1200 GeV

\bigcirc Branching Ratios \mathscr{B} :

- T': $\mathscr{B}(Zt, Ht, Wb) \approx (0.25, 0.25, 0.5)$
- O Final state signature:
 - At least 2 γ :
 - $P_T(\gamma 1) > 30 \text{ Gev}$; $P_T(\gamma 2) > 18 \text{ or } > 22 \text{ GeV}$
 -) mγγ > 90 GeV
 - Jet candidates $P_T > 25$ GeV and $|\eta| < 4.5$
 - O Photons and leptons well separated

O Leptonic Category:

- 2 photons
- 🔉 🛛 1 lepton at least
- 🔿 🛛 1 b-tagged jet
- O Bkg: QCD, γ +jets and $\gamma\gamma$ +jets 25% of the bkg yield
- O Hadronic Category:
 - 🜻 3 jets
 - 1 b-tagged jet
 - **O** Bkg: $t t^-$ H with H -> $\gamma \gamma$

Boosted Decision Trees (BDT) used to separate signal from the SM Higgs boson backgrounds

2302.12802

$T' \rightarrow Ht (H \rightarrow \gamma \gamma)$

Events / GeV

- Uncertainties associated are less than 5% on the final O parameter of interest
- 0 Data distributions and the corresponding signal+bkg model fits to mgg
 - M_{T'} = 600 GeV M_{T'} = 900 GeV M_{T'} = 1200 GeV 0
 - 0
 - O

CMS

$T' \rightarrow Ht (H \rightarrow \gamma \gamma)$

CMS

- Uncertainties associated are less than 5% on the final parameter of interest
- Data distributions and the corresponding signal+bkg model fits to mgg
 - O M_T = 600 GeV
 - O M_T['] = 900 GeV
 - O M_T' = 1200 GeV
- Combined upper limits 95% CL on $\sigma_{T'bq} \mathscr{B}_{T' \rightarrow tH}$ as a function of M_{T'}.
- This technique leads to an increased sensitivity to T' mass values up to 1 TeV with respect to the previous searches

m_{γγ} (GeV)

$B' \rightarrow bH(b \overline{b})$

- O For masses of the VLQs from 1 TeV to 2 TeV
- \bigcirc Branching Ratios \mathscr{B} :
 - B: $\mathcal{B}(Zb, Hb, Wt) \approx (0.25, 0.25, 0.5)$
- Final state signature:
 - High P_{T} Higgs boson decaying into $b b^{-}$ $P_{T} > 480$ GeV, $|\eta| > 2.0$
 - O Energetic jet from the b-quark from VLB
 - Softer forward jet from the spectator quark
 - Veto over leptons (e or μ).
- O Dominant Bkg: Multijet production
 - "Others": $t t^{-}$ shows small contributions forward
- O Systematic uncertainties
 - Signal and Bkg uncertainties

NO

D

Jets

≥1

0

2308.02595

 $B' \rightarrow bH(b b)$

2308.02595

• Expected and Observed exclusion limits on $\sigma(p p \rightarrow B' \rightarrow bH)$, as a function of the resonance mass and coupling strength k and relative width in the isospin-singlet and doublet scenarios.

Improvement by significantly expanding the region of the VLQ theoretical phase space explored and excluded by collider experiments.

12th International Workshop on the CKM Unitarity Triangle