Searches for Heavy Resonances Decaying to Bosons

Robert Les, On behalf of the ATLAS and CMS collaborations

CKM2023, September 21, 2023

Motivation

- Continued and mounting evidence pointing to the SM not being the complete theory $% \left({{{\rm{D}}_{{\rm{S}}}}_{{\rm{S}}}} \right)$
 - Electroweak theory might be low-energy effective theory
 - Possibly CKM/PMNS is part of this story
- Many extensions to the SM have been proposed
 - Extended gauge and Higgs sectors, composite particle models, gravity models
 - A frequent feature are new heavy resonances decaying to SM $W/Z/h/\gamma$ bosons

		Overview of CMS I	Overview of CMS B2G Results		
		CHS Preliminary			36 - 138 fb ⁻¹ (13 Te
	• $\mathbf{F} \rightarrow ady \rightarrow wy (a_1 = 0.1, A = 4M_1)$	ALL AS INCOMENTATION AND A REAL PROPERTY OF	14		
	W = eig = Ny(g_n = 0.1, A = 104 ₃)	ALL ALL COLO LIMAN	1.0		
	- 2' (2014 cambination)	H- 8.8 TH LINES LINES			3.7 b 114 ft-1
	27 → 201 → 6811	HE HEREE CHERN INC.	1.0		- Maul
116	2' → 2H + HF, with	Here and the call of the second state			13 P 201-
	2 - 31 - 9393	IN A DR LTCS LITER			3.9
	icio + z → wm → oloi	P. Ad Box COOD LINED			4
	 Z = 400 = 000 	Mr. IND 1M-2002 COMM			4.9
	> tr' (2056 combination)	AL AR THE CITCH LIVER			43
	$> 10' \rightarrow 102' \rightarrow 102'$	AL HENRIGGE 10		2.7	
	W + W + wet	ALL INCOME AND A LOCAL DESIGNATION OF THE REAL PROPERTY OF THE REAL PROPERTY.			40
5	and a test a plat	ALL MERCECUTINE INC.		16	
	 Bf = Bf = obsi 	A REAL COLOR FRANCE			
2	Market and a heat	M. BOTH OFFICE			40
	 M = M2 = 0005 	ALC: NO LW OVER COMP.			10
. =	a di se fif se sected	and the course of them		2.0	
	a h - and - adad	A NORTHERN			
	Disk and a spectra	A POTTONIC AL			
	a di const o bérma dan bernand ber	and the second second second			
	P A A A A A A A A A A A A A A A A A A A	A TO GOIL TO	11		
1.15	P. K. a. Kei a. Serway (sep.)	N. Martine C.A			
	A - BR - RUE-Aproxy	M. Persitant in A.P.			
	a warman a then	A PROVIDE AP			
	F R → HHI → COCO	Ma PROJECT W.P			
	 N - NN - Obce marges jat. 	M NO INCIDENT		3.0	
	V = 6000	M, AR BOI COCO LINES		2.7	
	 A WW - Augl 	Ma 106-2062 Comm		13	
	0.8.4.66	M. PEPERDEN SN		11	
	$> K \rightarrow WW$	M, HEPCELICAL EN	1.7		
	• A WW	Mr 19520.05 0.0			
	p-6 (2006 combination)	N ₂ R.8 76 CEEH LIVING 0.8			
	5 G = 22 = 19 m	M, HEFCEOCHERD 0.8			
	c> 0 → 22 → 19 t	M, PEPER (2028-202 4.9			
	■ 6 = 22 = 1993	Mg MG 134 (2003) CONIN	1.3		
	■ 6 = 22 = 8 ml	M, PEPGERODI III/	1.2		
18	Si → H+ → BOWW Sep I mesped-jet	M ₂ HPRIORN 05	1.4		
1 10	► D = HH = MWW (Hp)	M ₂ HE2536 6.3			
1 3	G = HH = multi-leptone	M, PEPERDON 0.6			
	• G → HH → H00	Mg H0254EL 0.7			
	G = HH = Mélé merged jet	My RAINE SHOULD BE		3.0	
	G = NW = hqt	No IN OTLL CLIMB	1.0		
		0 1	2	2	4 5

ATLAS and CMS are some of the main constraints for these types of searches

- "General purpose" detectors: most decay models accessible

X

- High energy: many models predict TeV scale particles
- High luminosity: predicted cross-sections can be low

 $V/h/\gamma$

CMS+ATLAS diboson resonance searches

CMS has an extensive search program for "diboson" resonances in $VV\!/Vh/hh$

- qqqq/qqbb
- $\ell \ell q q / \ell \ell b b$
- *ννqq*
- $\ell \nu q q / \ell \nu b b$
- $\ell \nu \ell \nu$

ATLAS has similar:

- *llbb/lvbb/vvbb*
- $\ell^{\pm}\nu\ell^{\pm}\nu + jj$
- $\ell \nu \ell \ell$
- $\ell \nu \ell \nu$
- $\ell\ell\ell\ell/\ell\ell\nu\nu$

- $-\ell^{\pm}\nu\ell^{\pm}\nu/\ell\nu\ell\ell+jj$
- -bbWW
- bbbb
- bb au au
- $bb\gamma\gamma$
- qqbb, qqqq
- $\ell \ell q q / \ell \nu q q / \nu \nu q q$
- bbbb
- $bb\tau\tau$
- $bb\gamma\gamma$
- Both ATLAS and CMS present limit on 3 benchmark models for these models:
 - Neutral Spin-0: Randal-Sundrum Radion
 - Charged Spin-0: Georgi-Machacek
 - Spin-1: Heavy vector triplet (HVT)
 - Spin-2: Randall-Sundrum Graviton

3

Boosted Boson Reconstruction

Largest BR of W/Z/h/t is to quarks

- When searching for new heavy resonance the boson $p_{\rm T}$ often very high
- Opening angle of decay products $\sim \frac{2m(V/h)}{n_T(V/h)}$
 - Can't reconstruct as individual jets
- Many analysis rely on very modern machine-learning techniques to "tag" large-R jets as W/Z/h/etc
 - CMS ParticleNet and previous DeepAK8 taggers are current top-of-the-line
 - Multi-class network for different decay types
 - Decorrelated with respect to jet-mass
 - Several recent ATLAS studies on architecture comparisons for tagging [1], [2], [3]

- Very generic search of $VV/Vh \rightarrow qqqq/qqbb$
 - Largest SM BR
 - Challenging background of multijet events
 - At very high- p_{T} this becomes small as well
- At high $p_{\rm T}$ the boson decay products become increasingly collimated
 - Cluster each $V\!/h$ as one large R=0.8 jet
 - CMS DeepAK8 tagger to separate $W/Z/t/h/{
 m QCD}$ jets from each other
- Background extracted from simultaneous 3D fit of individual jet masses and dijet mass system
 - Some minor 2.3σ excesses at $2.1/2.9~{\rm TeV}$
 - Limits in benchmark models

VV fully leptonic resonances

Complementary to fully-hadronic searches, are searches with leptonic decays, here $WZ\to\ell\nu\ell\ell$

- Very low-background, but lower signal
- Can rely on good MC predictions
- Better constraints at mid-mass 300 GeV < m(X) < 1 TeV

This analysis focused on VBF-produced signals

- Special neural-net to separate inclusive vs VBF production
- Strong limits in fermiophobic GM model

Vh semileptonic resonances

Also recent search for $Vh \rightarrow \ell\ell bb/\ell\nu bb/\nu\nu bb$

- Middle between background rejection and signal BR
- Dedicated control regions on major backgrounds through mass sidebands and $e\mu$ events

Different reconstruction techniques for $h \rightarrow bb$

- Two resolved ${\cal R}=0.4~{\rm jets}$
- One large R = 1.0 jet

Results consistent with SM

- Limits on HVT model
- Also limits on 2HDM model in inclusive and $b\bar{b}\text{-}\text{associated}$

Heavy Resonance Combination

ATLAS-CONF-2022-028

- ATLAS published combination of all $VV/Vh/\ell\bar{\ell}$ resonance searches
 - Check if local excesses coincide
 - Strongest limits
 - Limits directly on couplings of benchmark HVT model

CMS provides similar summary plots

Robert Les

Resonant *hh* Combination

ATLAS-CONF-2021-052

ATLAS performed similar combination of hh
ightarrow bbbb, bb au au, $bb\gamma\gamma$ searches

- $bb\tau\tau$: Local 3σ (2σ) © 0.9 TeV
 - Not visible in traditional bump-hunt but seen via neural-network in $\tau_{had}\tau_{had}$
- *bbbb*: Local 2.3 σ (0.4 σ) @ 1.1 TeV
 - Small excess above data-driven bkg in resolved region
- Combined: Local 3.2σ (2.1 σ) @ 1.1 TeV
 - Peaks co-linear

$Y \to XH \to bbbb$

CMS provides more broad $Y \to Xh$ ($X \neq 125 \text{GeV}$) searches in same *bbbb*, $bb\tau\tau$, $bb\gamma\gamma$ channels

Most recent *bbbb* search uses the current bleeding edge ParticleNet tagging technology to identify boosted $h/X \rightarrow bb$ candidates

- Defined signal regions and control/validation region for QCD backgrounds
- ttbar background from simulation, corrected in lepton+jet region
- Limits on next-to-MSSM

HDBS-2019-23

√s = 13 TeV, 139 fb

0.6 0.8

$Y \to XH \to qqbb$

- Two approaches investigated:
 - Cut-based regions defined on jet-substructure variables
 - Anomaly detection machine-learning discriminant
 - More model independent strategy/limits

Vormalized to Unity

0.22

0.2

0.18

0.16

0.14

0.12

0.0

0.06 0.04

0.02

Dark Jets

m. = 3.0 TeV

А→ВС→ЬБЪБ

-0.8 - 0.6 - 0.4 - 0.2

A→BC→aaaaaa

(m = 3.0 TeV, m_ = 200 GeV, m_ = 400 GeV)

(m = 3.0 TeV, m_ = 200 GeV, m_ = 400 GeV)

0.2

0.4

0

ATLAS search in $Z(\rightarrow \ell \ell)\gamma$:

- Exploits very good lepton reconstruction of the ${\cal Z}$
- Best mid-range limits in $X \in [300 \text{ GeV}, 1\text{TeV}]$

ATLAS search in $V(
ightarrow qq)\gamma$

- Relies on recent advances in hadronic boson tagging
- Strong high-mass limits

Also previous searches in CMS in $W\gamma$, $Z\gamma$ channels, and ATLAS $H(\rightarrow bb)\gamma$

All rely on data-driven function form estimates of the background and clear high- $p_{\rm T}$ photon identification+reconstruction+isolation

13

HIG-20-002

Low-mass diphoton Resonances HIG-20-002, ATLAS-CONF-2023-035

Same analysis for "low-mass" diphoton resonances performed by ATLAS

 $\rightarrow 2.9\sigma(1.35\sigma)$ local(global) excess seen at m = 95.4 GeV by CMS $\rightarrow 1.7\sigma$ local excess seen at m = 95.4 GeV by ATLAS

Multiboson Resonances

Limits on simple 2-body decays are being very tightly constrained

CMS searched for cascading *WWW* resonances

- Fully hadronic qqqqqq final state
- Semi-leptonic $\ell \nu q q q q$ final state
- Multiple jet-tagging based regions on R = 0.8 jets in the events
 - One for identifying individual $W \to q q$
 - One for identifying completely merged $WW \to qqqq$
 - Also include the possible contained $W \rightarrow \ell \nu$
 - All done with central CMS DeepAK8 tagger

Vhh Resonances

Eur. Phys. J. C 83 (2023) 519

ATLAS BSM search for

- non-resonant Vhh with higgs-vertex modifications
- resonant H-strahlung: $VH \rightarrow Vhh$
- resonant 2HDM: $A \rightarrow VH \rightarrow Vhh$

Robert Les

DM VV production

Many DM searches at LHC rely on the $E_{\rm T,miss}+X$ framework with WIMP-like particles recoiling again SM particles

- Also interest in two-mediator models with spin-1 Z^\prime and scalar s
- $s \rightarrow VV$ dominates above $m > 160 {
 m ~GeV}$

Both ATLAS and CMS have done searches in $VV+E_{\rm T,miss}$ signatures

- Dominant channels is $\ell\nu qq$
- Similar merged
- $WW \rightarrow qqqq$ categories as WWW searches
- Limits comparable and no excesses
- Rely on assumptions of DM mass and couplings

Summary

The LHC experiments have a very broad search programs for resonances with final state bosons

- Long history of di- $W\!/Z/h/\gamma$ searches
- Exploring more complex phase spaces with cascades of resonances
- Many of these analysis utilize state-of-the-art reconstruction techniques
 - Boosted W/Z/h/t-tagging is now commonplace
 - Many advanced machine-learning techniques at play
- LHC continues to tightly exclude heavy resonance
 - EFTs provide framework to extend searches to tail effects of even heavier resonances
 - ATLAS provided simultaneous fit of Higgs+EWK measurements with LEP precision data in SMEFT model
 - Some operators constrained more tightly with LHC then LEP

