$K ightarrow \mu^+ \mu^-$ in the continuum

Stefan Schacht

University of Manchester

12th International Workshop on the CKM Unitarity Triangle

Santiago de Compostela, Spain September 2023

A lot of recent activity in rare kaon decays

Theory	 D'Ambrosio Kitahara, 1707.06999 Dery Ghosh Grossman StS, 2104.06427 Buras Venturini, 2109.11032 Dery Ghosh, 2112.05801 	 D'Ambrosio Iyer Mahmoudi Neshatpour 2206.14748 Brod Stamou, 2209.07445 Dery Ghosh Grossman Kitahara StS, 2211.03804
Experiment	 NA62, 2103.15389: 3.4σ evidence for K⁺ → π⁺νν at NA62. KOTO, 2012.07571: Improved upper limit on K_L → π⁰νν. LHCb, 2001.10354: Upper limit on K_S → μ⁺μ⁻. LHCb, KAON'22: Upper limits on K_{S,L} → 2(μ⁺μ⁻). HIKE Lol, 2211.16586: New ideas for Kaons at CERN. 	

[D'Ambrosio Kitahara 1707.06999, Dery Ghosh Grossman StS, 2104.06427, Brod Stamou 2209.07445]

The new idea

- We can very cleanly measure $\operatorname{Im}(V_{td}^*V_{ts})$ (or η) from $K \to \mu^+\mu^-$.
- We can do so employing time-dependent interference effects.
- Third golden channel alongside:
 - $K^+ \to \pi^+ v \bar{v}$ gives $|V_{td} V_{ts}|$ NA62 $K_L \to \pi^0 v \bar{v}$ gives $\operatorname{Im}(V_{td}^* V_{ts})$ (or η) KOTO
- Determine the unitarity triangle purely with kaon decays.
 Crucial intergenerational consistency check of the SM.
- New ways to probe for new physics.

The three golden channels

 $K^+
ightarrow \pi^+
u ar{
u}$ and $K_L
ightarrow \pi^0
u ar{
u}$

"Theoretically clean, experimentally hard"

$K \rightarrow \mu^+ \mu^-$, common lore

"Theoretically not clean, experimentally not hard."

 $K
ightarrow \mu^+ \mu^-$, this talk

"Theoretically clean, experimentally hard."

- f_K is the main hadronic uncertainty.
- Challenging to measure time-dependent interference effects.

Long-Distance and Short-Distance Physics

[Isidori Unterdorfer hep-ph/0311084]

- To get a theoretically clean method we need a theory error of $\leq 1\%$.
- We are currently not able to achieve theory precision of long distance (LD) effects in $K \rightarrow \mu^+ \mu^-$ below ~ 10%.
- We know short-distance (SD) physics at desired precision.

• How can we measure the SD physics?

Basics of $K \to \mu^+ \mu^-$

Approximation

• In this talk we neglect CP-violating in mixing ε_K .

Can be incorporated into analysis [Brod Stamou 2209.07445].

Angular momentum conservation: Only $(\mu\mu)_{l=0}$ or $(\mu\mu)_{l=1}$

• CP-conserving decays

$$K_L \rightarrow (\mu\mu)_{l=0}$$
 K
CP-odd CP-odd CP-e

• CP-violating decays

$$K_S \rightarrow (\mu\mu)_{l=0}$$
 $K_L \rightarrow (\mu\mu)_{l=1}$
P-even CP-odd CP-odd CP-even

 $(\mu\mu)_{l=1}$

CP-even

ven

To good approximation:

• LD effects are CP conserving. \Rightarrow CP violating amplitudes are purely SD.

Short-distance (SD) and long-distance (LD) physics

• CP-conserving decays: SD and LD

$$K_L
ightarrow (\mu\mu)_{l=0}$$
CP-odd CP-odd

 $K_S \rightarrow (\mu\mu)_{l=1}$

CP-even CP-even

• CP-violating decays: Only SD

 $K_S \rightarrow (\mu\mu)_{l=0}$ CP-even CP-odd

$$K_L \rightarrow (\mu\mu)_{l=1}$$

CP-odd CP-even

$K ightarrow \mu^+ \mu^-$ in the Standard Model

• SM: SD operator does not generate $(\mu\mu)_{l=1}$ state (CPT).

Short-distance (SD) and long-distance (LD) physics

• CP-conserving decays: SD and LD

$$K_L
ightarrow (\mu\mu)_{l=0}$$
CP-odd CP-odd

 $K_S
ightarrow (\mu\mu)_{l=1}$ CP-even CP-even

• CP-violating decays: Only SD

 $K_S \rightarrow (\mu\mu)_{l=0}$ CP-even CP-odd $\begin{array}{rcl} K_L & \rightarrow & (\mu\mu)_{l=1} \\ \text{CP-odd} & \text{CP-even} \\ & = \mathbf{0} \end{array}$

• CP-conserving decays: SD and LD $|A(K_L \rightarrow (\mu\mu)_{l=0})|$ CP-odd CP-odd

 $|A(K_S \rightarrow (\mu\mu)_{l=1})|$ CP-even CP-even

- A priori: 6 parameters: 4 magnitudes, 2 phases.
- In SM/large class of NP models: Reduction to 4, 1 of which is pure SD.

Stefan Schacht (Manchester)

• We can cleanly calculate it in the SM.

$$\mathcal{B}(K_S \to (\mu\mu)_{l=0}) = 1.7 \cdot 10^{-13} \times \left(\frac{A^2 \lambda^5 \bar{\eta}}{1.3 \times 10^{-4}}\right)$$

[Inami Lim 1981, Isidori Unterdorfer hep-ph/0311084, Dumm Pich hep-ph/9801298, Brod Stamou 2209.07445]

- Hadronic uncertainties from $f_K < 1\%$.
- Way to extract η theoretically clean.
- We can also calculate $\mathcal{B}(K_S \to (\mu\mu)_{l=0})$ cleanly in NP models.

In practice we measure incoherent sum

- Muon states with specific angular momentum $(\mu\mu)_{l=0}$ and $(\mu\mu)_{l=1}$: Not available to us: We cannot separate l = 0 and l = 1.
- Instead, we measure the incoherent sum:

$$\Gamma(K_S \to \mu^+ \mu^-)_{\text{meas.}} = \Gamma(K_S \to (\mu^+ \mu^-)_{l=0}) + \Gamma(K_S \to (\mu^+ \mu^-)_{l=1})$$

 $\Gamma(K_L \to \mu^+ \mu^-)_{\text{meas.}} = \Gamma(K_S \to (\mu^+ \mu^-)_{l=0}) + \Gamma(K_S \to (\mu^+ \mu^-)_{l=1})$

 \Rightarrow "So what are you talking about?"

Solution: Look at time dependence

• Generic time dependence of *K* decay:

$$\left(\frac{d\Gamma}{dt}\right) \propto C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2\left(C_{sin}\sin(\Delta m t) + C_{cos}\cos(\Delta m t)\right) e^{-\Gamma t}$$

- $\Gamma = (\Gamma_S + \Gamma_L)/2$. Δm : Kaon mass difference.
- The 4 Cs are the observables:
 - C_L is related to K_L decay rate.
 - C_S is related to K_S decay rate.
 - C_{sin} and C_{cos} are due to interference.
- We can calculate the 4 *C*s in terms of the 4 theoretical parameters.

We can completely solve the system.

- For pure K^0 beam: $C_L = |A(K_L)_{l=0}|^2$ $C_S = |A(K_S)_{l=0}|^2 + |A(K_S)_{l=1}|^2$ $C_{cos} = \operatorname{Re} (A(K_S)_{l=0} \times A^*(K_L)_{l=0})$ $C_{sin} = \operatorname{Im} (A(K_S)_{l=0} \times A^*(K_L)_{l=0})$
 - We can get the clean amplitude from the observable combination

$$|A(K_S)_{l=0}|^2 = \frac{C_{cos}^2 + C_{sin}^2}{C_L}$$

• We can rewrite this as:

$$\mathcal{B}(K_S \to (\mu^+ \mu^-)_{l=0}) = \mathcal{B}(K_L \to \mu^+ \mu^-) \times \frac{\tau_S}{\tau_L} \times \frac{C_{cos}^2 + C_{sin}^2}{C_L^2}$$

- Compare with calculation of $\mathcal{B}(K_S \to (\mu^+ \mu^-)_{l=0}) \Rightarrow \text{extract } \eta$.
- We need the interference terms!

Stefan Schacht (Manchester)

Demonstration of Interference Effect

- Using estimates, not showing large hadronic uncertainties for long-distance contributions.
- As examples, two ad-hoc values for the phase.
- All parameters can be determined from experiment.

Stefan Schacht (Manchester)

Experimental Considerations

- Experimentally, not easy to have pure K^0 or \overline{K}^0 beam.
- NA62: charged kaons. KOTO: pure K_L . LHCb: almost equal mix.
- In these limits no sensitivity to interference term.
- Employ mixed beam. Need non-zero production asymmetry.
 - Regeneration of K_S in K_L beam through matter effects.
 - Charged exchange targets: turn charged K^+ beams into K^0 beams.
 - Post-selection using tagging (?)
- Future new kaon facility (?)
- Interference terms are then diluted by dilution factor *D*:

$$D = \frac{N_{K^0} - N_{\overline{K}^0}}{N_{K^0} + N_{\overline{K}^0}} \quad C_{cos} \mapsto DC_{cos} \qquad C_{sin} \mapsto DC_{sin}$$

N_K: Number of incoherent mixture of kaons/anti-kaons at t = 0.
Pure K⁰/K⁰: D = ±1.

How many kaons are needed to do the measurement?

• We have $\mathcal{B}(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \cdot 10^{-9}$.

• Only 1% of the K_L decay in region of interest $t \lesssim 6 au_S$

• Fraction of useful events: $\sim 10^{-10}$.

• For O(1000) events we need $O(10^{13}) K^0$ to start with.

First Experimental Studies: Next-generation Kaon Experiments

[Marchevski 2301.06801]

- First possible experimental setup presented: Modification of NA62 $K^+ \Rightarrow K^0$ at CERN SPS.
- Need sample of $O(10^{14} 10^{15}) K_L$ and K_S decays.
- Need to suppress background from $K_S \to \pi^+\pi^-$ ($\mathcal{B} \sim 70\%$) and radiative $K_L \to \mu^+\mu^-\gamma$ ($\mathcal{B}(\sim 3.6 \cdot 10^{-7})$).
- Requires excellent kinematic resolution + efficient photon detection

Relating $\Gamma(K \to \mu^+ \mu^-)(t)$ and $\mathcal{B}(K_L \to \gamma \gamma)/\mathcal{B}(K_L \to \mu^+ \mu^-)$

[Dery Ghosh Grossman Kitahara StS 2211.03804]

• We know more about the phase shift in the oscillating rate.

$$\varphi_0 \equiv \arg\left(\mathcal{A}^*(K_S \to (\mu\mu)_{l=0})\mathcal{A}(K_L \to (\mu\mu)_{l=0})\right)$$
$$\frac{1}{\mathcal{N}}\frac{d\Gamma(K^0 \to \mu^+\mu^-)}{dt} = C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2C_{\text{int.}}\cos(\Delta M_K t - \varphi_0) e^{-\frac{\Gamma_L + \Gamma_S}{2}t}$$

We find the precision relation

$$\cos^2 \varphi_0 = (\text{known QED factor}) \times \frac{\mathcal{B}(K_L \to \gamma \gamma)}{\mathcal{B}(K_L \to \mu^+ \mu^-)}$$

Relating $\Gamma(K \to \mu^+ \mu^-)(t)$ and $\mathcal{B}(K_L \to \gamma \gamma)/\mathcal{B}(K_L \to \mu^+ \mu^-)$

[Dery Ghosh Grossman Kitahara StS 2211.03804]

Result (model-independent)

$$\cos^2 \varphi_0 = 0.96 \pm 0.02_{\text{exp.}} \pm 0.02_{\text{th}}$$

- Exp. error: From BR measurements in R_{K_L} .
- Th. error 1: Higher order QED corrections ~ α ~ 1%.
- Th. error 2: Contribution of additional intermediate on-shell contributions $(3\pi, \pi\pi\gamma)$, also estimated as ~ 1%. [Martin De Rafael Smith 1970]

Stefan Schacht (Manchester)

Discrete Ambiguities (model-independent)

[Dery Ghosh Grossman Kitahara StS 2211.03804]

Beyond the Standard Model

How much room is there for NP?

[Dery Ghosh 2112.05801]

2020 measurement of LHCb [LHCb, 2001.10354]

$$\mathcal{B}(K_S \to \mu^+ \mu^-) < 2.1 \cdot 10^{-10}$$

• Sum of contributions with different CP (no interference):

$$\mathcal{B}(K_S \to \mu^+ \mu^-) = \mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0} + \mathcal{B}(K_S \to \mu^+ \mu^-)_{l=1}$$

• Conservative interpretation: Use as bound solely for the l=0 (SD) contribution

$$\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0} \le 2.1 \cdot 10^{-10}$$
.

• \Rightarrow A lot of room for NP in the SD amplitude:

$$R(K_S \to \mu^+ \mu^-)_{l=0} \equiv \frac{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}^{SM} \lesssim 10^3 \,.$$

How much room is there for NP?

[Dery Ghosh 2112.05801]

- Both can saturate bound, consistent with existing constraints.
- Updated bounds from LHCb important to constrain the model space further.

[Diagrams courtesy Avital Dery]

[Buras Venturini 2109.11032]

• Combination of $K_S \rightarrow \mu^+ \mu^-$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$:

$$\frac{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})} = 1.55 \times 10^{-2} \left(\frac{\lambda}{0.225}\right)^2 \left(\frac{Y(x_t)}{X(x_t)}\right)^2$$

- Depends only on Wolfenstein- λ ($|V_{us}|$) and m_t .
- Does not depend on $|V_{cb}|$.

• $K \to \mu^+ \mu^-$ and $K_L \to \pi^0 \nu \bar{\nu}$ sensitive to different NP operators.

- Within SM, $K(t)
 ightarrow \mu^+ \mu^-$ gives same info as $K_L
 ightarrow \pi^0
 u ar
 u$.
- Complementary NP sensitivity: Combination distinguishes models.
- Time-dependence of $K
 ightarrow \mu^+ \mu^-$: 2 independent SM tests:
 - ► Coefficient of interference term $\Rightarrow \mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}$. In SM, $\propto |V_{ts}V_{td}\sin(\beta + \beta_s)|$.
 - Interference term phase shift φ_0 predicted up to 4-fold ambiguity.
- "Theoretically clean, experimentally hard": Can we do it?

BACK-UP

$K \rightarrow \pi v \bar{v}$: Very clean SM prediction.

- Probing FCNC $s \rightarrow d\nu \bar{\nu}$.
- Loops dominated by top quark contribution.
- Hadronic matrix elements from $K \rightarrow \pi e v$.

[Snowmass white paper 2204.13394]

Current Status of $K \to \pi v \bar{v}$

SM prediction

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74}$$
$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right)^2 \left(\frac{|V_{cb}|}{0.0407}\right)^2 \left(\frac{\sin \gamma}{\sin 73.2^\circ}\right)^2$$

[NA62, 2103.15389]

[Buras et al, 1503.02693]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11}$$

[KOTO, 1810.09655]

NA62

K

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \le 3 \times 10^{-9}$

Resolving Discrete Ambiguities (model-dependent): 4-fold \Rightarrow 2-fold

- Sign of $\cos arphi_0$ can be determined using ChPT and/or Lattice QCD.
- In large N_C limit, it was found destructive interference between SD and LD contributions. [Isidori/Unterdorfer hep-ph/0311084, Dumm/Pich hep-ph/9801298]

We find that destructive interference implies:

 $\operatorname{sgn}(\cos \varphi_0) = \operatorname{sgn}(\tan \theta_{SD})$. θ_{SD} : weak phase of SD $K^0 \to (\mu^+ \mu^-)_{l=0}$ amplitude.

In the Standard Model

$$\tan \theta_{SD}^{SM} = \tan \left(\arg \left(-\frac{V_{ts}^* V_{td} + V_{cs}^* V_{cd} Y_{NL} / Y_t}{V_{cs}^* V_{cd}} \right) \right) < 0$$

$$\Rightarrow \left[\cos \varphi_0 \right]_{\text{large } N_C}^{SM} = -0.98 \pm 0.02 \,.$$

• Remaining ambiguity $\mathrm{sgn}(\sin arphi_0)$ cannot be resolved: large uncertainty of LD contributions.

Model Independent Effective Operator Analysis

$$\mathcal{H}_{eff}^{\Delta S=1} = \sum_{i} C_i O_i \,.$$

[Dery Ghosh 2112.05801]

Vectorial:

$$O_{VLL} = \left(\overline{Q}_L \gamma^{\mu} Q_L\right) \left(\overline{L}_L \gamma_{\mu} L_L\right), \qquad O_{VLR} = \left(\overline{Q}_L \gamma^{\mu} Q_L\right) \left(\overline{e}_R \gamma_{\mu} e_R\right), \\ O_{VRL} = \left(\overline{d}_R \gamma^{\mu} d_R\right) \left(\overline{L}_L \gamma_{\mu} L_L\right), \qquad O_{VRR} = \left(\overline{d}_R \gamma^{\mu} d_R\right) \left(\overline{e}_R \gamma_{\mu} e_R\right).$$

Scalar:

$$O_{SLR} = \left(\overline{Q}_L d_R\right) (\overline{e}_R L_L) , \qquad O_{SRL} = \left(\overline{d}_R Q_L\right) \left(\overline{L}_L e_R\right) .$$

- SM: $K_S \rightarrow (\mu^+ \mu^-)_{l=0}$ and $K_L \rightarrow \pi^0 \bar{\nu} \nu$ from O_{VLL} .
- Current bound sensitive to NP scales:

 $\Lambda \sim 40 \, \text{TeV} \, (\text{vectorial}) \quad \text{and} \quad \Lambda \sim 130 \, \text{TeV} \, (\text{scalar}).$

Stefan Schacht (Manchester)

Complementarity of $K_S ightarrow (\mu^+\mu^-)_{l=0}$ and $K_L ightarrow \pi^0 u ar{ u}$

SM

• $\bar{\eta}$ also accessible at KOTO using $K_L \to \pi^0 \nu \bar{\nu}$.

Prospect: "KOTO step 2" aims to measure $\bar{\eta}$ with precision of $\sim 14\%$.

[J-PARC white paper 2110.04462]

NP

[Dery Ghosh 2112.05801]

• In units of SM prediction: $R(X) = X/X_{SM}$:

$$R(K_S \to \mu^+ \mu^-)_{l=0} = 1 + \text{function}\left(\frac{C_{SLR}^{NP}}{C_{SLR}}, \frac{C_{SRL}^{NP}}{C_{VLL}}, \frac{C_{VLR}^{NP}}{C_{VRL}}, \frac{V_{VRR}^{NP}}{V_{VRR}}\right)$$
$$R(K_L \to \pi^0 \bar{\nu} \nu) = 1 + \text{function}\left(\frac{C_{VLL}^{NP}}{C_{VLL}}, \frac{C_{VRL}^{NP}}{C_{VRL}}\right).$$

- $K_S \rightarrow (\mu^+ \mu^-)_{l=0}$: sensitivity to RH leptonic currents + scalar operators.
- Complementary NP sensitivity.