 $K \rightarrow \mu^+$ $^{\prime}$ $^+$ in the continuum

Stefan Schacht

University of Manchester

12th International Workshop on the CKM Unitarity Triangle

Santiago de Compostela, Spain September 2023

A lot of recent activity in rare kaon decays

[D'Ambrosio Kitahara 1707.06999, Dery Ghosh Grossman StS, 2104.06427, Brod Stamou 2209.07445]

The new idea

- W e can very cleanly measure $\text{Im}(V_{td}^*V_{ts})$ (or η) from $K \to \mu^+\mu^-$.
- $\frac{1}{2}$ We can do so employing time-dependent interference effects.
- Third golden channel alongside:
	- $K^+ \to \pi^+$
 $K^- \to \pi^0$ $\nu \bar{\nu}$ gives $|V_{td}V_{ts}|$ (NA62

	NA62

	NA62

	NA62 $K_L \to \pi^0 \nu \bar{\nu}$ gives $\text{Im}(V_{td}^* V_{ts})$ (or η) KOTO
- Determine the unitarity triangle purely with kaon decays. Crucial intergenerational consistency check of the SM.
- New ways to probe for new physics.

The three golden channels

 $K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$
"Theore

"Theoretically clean, experimentally hard"

$K \rightarrow \mu^+$ µ − , common lore

"Theoretically not clean, experimentally not hard."

 $K \to \mu^+ \mu^-$, this talk µ

"Theoretically clean, experimentally hard."

- *f^K* is the main hadronic uncertainty.
- Challenging to measure time-dependent interference effects.

Long-Distance and Short-Distance Physics

[Isidori Unterdorfer hep-ph/0311084]

- \bullet To get a theoretically clean method we need a theory error of $\leq 1\%$.
- We are currently not able to achieve theory precision of long distance (LD) effects in $K \rightarrow \mu^+$ \mathbf{r} $^-$ below $\sim 10\%$.
- We know short-distance (SD) physics at desired precision.
- How can we measure the SD physics?

Basics of $K \to \mu^+\mu^$ µ

Approximation

 \bullet In this talk we neglect CP-violating in mixing ε_K . Can be incorporated into analysis [Brod Stamou 2209.07445].

Angular momentum conservation: Only $(\mu\mu)_{l=0}$ or $(\mu\mu)_{l=1}$

• CP-conserving decays

$$
K_L \rightarrow (\mu \mu)_{l=0} \qquad K_S \rightarrow (\mu \mu)_{l=1}
$$

CP-odd CP-odd CP-even CP-even

CP-violating decays

$$
K_S \rightarrow (\mu \mu)_{l=0} \qquad K_L \rightarrow (\mu \mu)_{l=1}
$$

CP-even CP-odd CP-odd CP-even

CP-even

To good approximation:

 \bullet LD effects are CP conserving. \Rightarrow CP violating amplitudes are purely SD.

Short-distance (SD) and long-distance (LD) physics

CP-conserving decays: SD and LD

$$
K_L \rightarrow (\mu \mu)_{l=0}
$$

CP-odd CP-odd

 $K_S \rightarrow (\mu\mu)_{l=1}$

CP-even CP-even

CP-violating decays: Only SD

 $K_S \rightarrow (\mu\mu)_{l=0}$ CP-even CP-odd

$$
K_L \rightarrow (\mu \mu)_{l=1}
$$

CP-odd CP-even

$K \rightarrow \mu^{+}$ µ $^−$ in the Standard Model

• SM: SD operator does not generate $(\mu\mu)_{l=1}$ state (CPT).

Short-distance (SD) and long-distance (LD) physics

CP-conserving decays: SD and LD

 $K_L \rightarrow (\mu\mu)_{l=0}$ $K_S \rightarrow (\mu\mu)_{l=1}$
CP-odd CP-odd CP-odd CP-even CP-even CP-even CP-even

CP-violating decays: Only SD

 $K_S \rightarrow (\mu\mu)_{l=0}$ $K_L \rightarrow (\mu\mu)_{l=1}$
 CP-even CP-odd CP-even CP-even CP-odd CP-odd CP-even $= 0$

CP-conserving decays: SD and LD

 $|A(K_L \rightarrow (\mu \mu)_{l=0})|$ $|A(K_S \rightarrow (\mu \mu)_{l=1})|$
 *C*P-odd *CP-odd CP-oven CP-even* CP-even CP-even

CP-violating decays: Only SD $|A(K_S \rightarrow (\mu \mu)_{l=0})|$ $|A(K_L \rightarrow (\mu \mu)_{l=1})| = 0$
 CP-even CP-odd CP-odd CP-even CP-even CP-odd Phases $\varphi_0 \equiv \arg (\mathcal{A}^*(K_S \to (\mu \mu)_{l=0}) \mathcal{A}(K_L \to (\mu \mu)_{l=0}))$ $\varphi_1 \equiv \arg \left(\mathcal{A}^*(K_S \to (\mu \mu)_{l=1}) \mathcal{A}(K_L \to (\mu \mu)_{l=1}) \right) = \mathbf{0}$

- A priori: 6 parameters: 4 magnitudes, 2 phases.
- In SM/large class of NP models: Reduction to 4, 1 of which is pure SD.

We can cleanly calculate it in the SM.

$$
\mathcal{B}(K_S \to (\mu \mu)_{l=0}) = 1.7 \cdot 10^{-13} \times \left(\frac{A^2 \lambda^5 \bar{\eta}}{1.3 \times 10^{-4}}\right)
$$

[Inami Lim 1981, Isidori Unterdorfer hep-ph/0311084, Dumm Pich hep-ph/9801298, Brod Stamou 2209.07445]

- \bullet Hadronic uncertainties from $f_K < 1\%$.
- \bullet Way to extract η theoretically clean.
- \bullet We can also calculate $\mathcal{B}(K_S \to (\mu\mu)_{l=0})$ cleanly in NP models.

In practice we measure incoherent sum

- Muon states with specific angular momentum $(\mu\mu)_{l=0}$ and $(\mu\mu)_{l=1}$: Not available to us: We cannot separate $l = 0$ and $l = 1$.
- **.** Instead, we measure the incoherent sum:

$$
\Gamma(K_S \to \mu^+ \mu^-)_{\text{meas.}} = \Gamma(K_S \to (\mu^+ \mu^-)_{l=0}) + \Gamma(K_S \to (\mu^+ \mu^-)_{l=1})
$$

 $\Gamma(K_L \to \mu^+ \mu^-)_{\text{meas.}} = \Gamma(K_S \to (\mu^+ \mu^-)_{l=0}) + \Gamma(K_S \to (\mu^+ \mu^-)_{l=1})$ \mathbf{r} \mathbf{r} \mathbf{r}

⇒ "So what are you talking about?"

Solution: Look at time dependence

 \bullet Generic time dependence of K decay:

$$
\left(\frac{d\Gamma}{dt}\right) \propto C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2 \left(C_{sin} \sin(\Delta mt) + C_{cos} \cos(\Delta mt)\right) e^{-\Gamma t}
$$

- $\Gamma = (\Gamma_S + \Gamma_L)/2$. Δm : Kaon mass difference.
- **o** The 4 Cs are the observables:
	- \triangleright C_L is related to K_L decay rate.
	- \triangleright *C_S* is related to K_S decay rate.
	- \triangleright C_{sin} and C_{cos} are due to interference.
- We can calculate the 4*C*s in terms of the 4 theoretical parameters.

We can completely solve the system.

- For pure K^0 beam: $C_L = |A(K_L)_{l=0}|^2$ $C_S = |A(K_S)_{l=0}|^2 + |A(K_S)_{l=1}|^2$ $C_{cos} = \text{Re}(A(K_S)_{l=0} \times A^*(K_L)_{l=0})$ $C_{sin} = \text{Im} (A(K_S)_{l=0} \times A^*(K_L)_{l=0})$
	- We can get the clean amplitude from the observable combination

$$
|A(K_S)_{l=0}|^2 = \frac{C_{cos}^2 + C_{sin}^2}{C_L}
$$

We can rewrite this as:

$$
\mathcal{B}(K_S \to (\mu^+\mu^-)_{l=0}) = \mathcal{B}(K_L \to \mu^+\mu^-) \times \frac{\tau_S}{\tau_L} \times \frac{C_{cos}^2 + C_{sin}^2}{C_L^2}
$$

- Compare with calculation of $\mathcal{B}(K_S \to (\mu^+\mu^-)_{l=0}) \Rightarrow$ extract η .
We need the interference terms! \mathbf{r}
- We need the interference terms!

Demonstration of Interference Effect

- Using estimates, not showing large hadronic uncertainties for long-distance contributions.
- As examples, two ad-hoc values for the phase.
- All parameters can be determined from experiment.

Experimental Considerations

- Experimentally, not easy to have pure K^0 or $\overline K^0$ beam.
- NA62: charged kaons. KOTO: pure K_L . LHCb: almost equal mix.
- **.** In these limits no sensitivity to interference term.
- Employ mixed beam. Need non-zero production asymmetry.
	- \triangleright Regeneration of K_S in K_L beam through matter effects.
	- \blacktriangleright Charged exchange targets: turn charged K^+ beams into K^0 beams.
	- \triangleright Post-selection using tagging (?)
- Future new kaon facility (?)
- \bullet Interference terms are then diluted by dilution factor D :

$$
D = \frac{N_{K^0} - N_{\overline{K}^0}}{N_{K^0} + N_{\overline{K}^0}} \quad C_{cos} \mapsto DC_{cos} \qquad C_{sin} \mapsto DC_{sin}
$$

 N_K : Number of incoherent mixture of kaons/anti-kaons at $t=0$. Pure K^0/\overline{K}^0 : $D = \pm 1$.

- We have $\mathcal{B}(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \cdot 10^{-9}$ $^{\prime}$
- \bullet Only 1% of the K_L decay in region of interest $t \leq 6\tau_S$

Fraction of useful events: $\sim 10^{-10}$.

For $O(1000)$ events we need $O(10^{13})$ K^0 to start with.

First Experimental Studies: Next-generation Kaon Experiments

[Marchevski 2301.06801]

- **•** First possible experimental setup presented: Modification of NA62 $K^+ \Rightarrow K^0$ at CERN SPS.
- Need sample of $O(10^{14} 10^{15}) K_L$ and K_S decays.
- Need to suppress background from $K_S \to \pi^+\pi^-$ ($\mathcal{B} \sim 70\%$)
and radiative $K_S \to \mu^+\mu^-\nu$ ($\mathcal{B}(\sim 3.6 \cdot 10^{-7})$) and radiative $K_L \to \mu^+ \mu^- \gamma$ ($\mathcal{B}(\sim 3.6 \cdot 10^{-7})$). \mathbf{r}
- Requires excellent kinematic resolution + efficient photon detection

Relating $\Gamma(K \to \mu^+$ µ $\mathcal{O}(t)$ and $\mathcal{B}(K_L \to \gamma \gamma)/\mathcal{B}(K_L \to \mu^+$ $^{\prime}$ −)

[Dery Ghosh Grossman Kitahara StS 2211.03804]

We know more about the phase shift in the oscillating rate.

$$
\varphi_0 \equiv \arg \left(\mathcal{A}^* (K_S \to (\mu \mu)_{l=0}) \mathcal{A} (K_L \to (\mu \mu)_{l=0}) \right)
$$

$$
\frac{1}{N} \frac{d\Gamma (K^0 \to \mu^+ \mu^-)}{dt} = C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2C_{\text{int.}} \cos(\Delta M_K t - \varphi_0) e^{-\frac{\Gamma_L + \Gamma_S}{2} t}
$$

We find the precision relation

$$
\cos^2 \varphi_0 = (\text{known QED factor}) \times \frac{\mathcal{B}(K_L \to \gamma \gamma)}{\mathcal{B}(K_L \to \mu^+ \mu^-)}
$$

Relating $\Gamma(K \to \mu^+$ µ $\mathcal{O}(t)$ and $\mathcal{B}(K_L \to \gamma \gamma)/\mathcal{B}(K_L \to \mu^+$ $^{\prime}$ −)

[Dery Ghosh Grossman Kitahara StS 2211.03804]

Result (model-independent)

$$
\cos^2 \varphi_0 = 0.96 \pm 0.02_{\text{exp.}} \pm 0.02_{\text{th}}
$$

- Exp. error: From BR measurements in $R_{K_L}.$
- Th. error 1: Higher order QED corrections $\sim \alpha \sim 1\%$.
- **•** Th. error 2: Contribution of additional intermediate on-shell contributions $(3\pi, \pi\pi\gamma)$, also
estimated as $\sim 1\%$ [Martin De Rafael Smith 1970]

Discrete Ambiguities (model-independent)

[Dery Ghosh Grossman Kitahara StS 2211.03804]

Beyond the Standard Model

[Dery Ghosh 2112.05801]

• 2020 measurement of LHCb [LHCb, 2001.10354]

$$
\mathcal{B}(K_S \to \mu^+\mu^-) < 2.1 \cdot 10^{-10}
$$

Sum of contributions with different CP (no interference):

$$
\mathcal{B}(K_S \to \mu^+ \mu^-) = \mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0} + \mathcal{B}(K_S \to \mu^+ \mu^-)_{l=1}
$$

• Conservative interpretation: Use as bound solely for the $l = 0$ (SD) contribution

$$
\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0} \leq 2.1 \cdot 10^{-10} \, .
$$

⇒ A lot of room for NP in the SD amplitude:

$$
R(K_S \to \mu^+ \mu^-)_{l=0} \equiv \frac{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}} \stackrel{\text{SM}}{\leq} 10^3 \, .
$$

How much room is there for NP?

[Dery Ghosh 2112.05801]

- Both can saturate bound, consistent with existing constraints.
- Updated bounds from LHCb important to constrain the model space further.

[Diagrams courtesy Avital Dery]

[Buras Venturini 2109.11032]

Combination of $K_S \to \mu^+\mu^-$ and $K_L \to \pi^0\nu\bar{\nu}$: $^{\prime}$

$$
\frac{\mathcal{B}(K_S \to \mu^+ \mu^-)_{l=0}}{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})} = 1.55 \times 10^{-2} \left(\frac{\lambda}{0.225}\right)^2 \left(\frac{Y(x_t)}{X(x_t)}\right)^2
$$

- Depends only on Wolfenstein- λ ($|V_{us}|$) and m_t .
- \bullet Does not depend on $|V_{cb}|$.

 $K \to \mu^+\mu^-$ and $K_L \to \pi^0\nu\bar{\nu}$ sensitive to different NP operators. \mathbf{r}

- Within SM, $K(t) \to \mu^+\mu^-$ gives same info as $K_L \to \pi^0\nu\bar{\nu}$.
- µ Complementary NP sensitivity: Combination distinguishes models.
- Time-dependence of $K \to \mu^+\mu^-$: 2 independent SM tests:
 \therefore Coefficient of interference term \Rightarrow $\mathcal{R}(K_{\mu\nu}, \chi^+\mu^-)$.
	- **I** Coefficient of interference term \Rightarrow $\mathcal{B}(K_S \rightarrow \mu^+ \mu^-)_{l=0}$. $^{\prime}$ \ln SM, \propto $|V_{ts}V_{td} \sin(\beta + \beta_s)|$.
	- Interference term phase shift φ_0 predicted up to 4-fold ambiguity.
- "Theoretically clean, experimentally hard": Can we do it?

BACK-UP

$\overline{K} \to \pi \overline{\nu} \overline{\nu}$: Very clean SM prediction.

- **•** Probing FCNC $s \to d\overline{\nu}$.
- Loops dominated by top quark contribution.
- **•** Hadronic matrix elements from $K \to \pi e \nu$.

[Snowmass white paper 2204.13394]

Current Status of $K \to \pi \nu \bar{\nu}$

SM prediction

$$
\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74}
$$

$$
\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right)^2 \left(\frac{|V_{cb}|}{0.0407}\right)^2 \left(\frac{\sin \gamma}{\sin 73.2^\circ}\right)^2
$$

NA62 [NA62, 2103.15389]

$$
\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11}
$$

KOTO [KOTO, 1810.09655]

$$
\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \leq 3 \times 10^{-9}
$$

Resolving Discrete Ambiguities (model-dependent): 4-fold \Rightarrow 2-fold

- \bullet Sign of $\cos \varphi_0$ can be determined using ChPT and/or Lattice QCD.
- \bullet In large N_C limit, it was found destructive interference between SD and LD contributions. [Isidori/Unterdorfer hep-ph/0311084, Dumm/Pich hep-ph/9801298]

We find that destructive interference implies:

 $\text{sgn}(\cos\varphi_0) = \text{sgn}(\tan\theta_{SD})$. θ_{SD} : weak phase of SD $K^0 \to (\mu^+$ $^{\prime}$ −)*^l*=⁰ amplitude.

In the Standard Model

$$
\tan \theta_{SD}^{\text{SM}} = \tan \left(\arg \left(-\frac{V_{ts}^* V_{td} + V_{cs}^* V_{cd} Y_{NL} / Y_t}{V_{cs}^* V_{cd}} \right) \right) < 0
$$

\n
$$
\Rightarrow \left[\cos \varphi_0 \right]_{\text{large } N_C}^{\text{SM}} = -0.98 \pm 0.02.
$$

• Remaining ambiguity sgn(sin φ_0) cannot be resolved: large uncertainty of LD contributions.
Stefan Schacht (Manchester) (K→ u⁺u⁻ in the continuum

Model Independent Effective Operator Analysis

$$
\mathcal{H}_{eff}^{\Delta S=1} = \sum_i C_i O_i.
$$

F Dery Ghosh 2112.05801]

Vectorial:

$$
O_{VLL} = (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{L}_L \gamma_{\mu} L_L), \qquad O_{VLR} = (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{e}_R \gamma_{\mu} e_R),
$$

\n
$$
O_{VRL} = (\overline{d}_R \gamma^{\mu} d_R) (\overline{L}_L \gamma_{\mu} L_L), \qquad O_{VRR} = (\overline{d}_R \gamma^{\mu} d_R) (\overline{e}_R \gamma_{\mu} e_R).
$$

Scalar:

$$
O_{SLR} = (\overline{Q}_L d_R)(\overline{e}_R L_L) , \qquad O_{SRL} = (\overline{d}_R Q_L)(\overline{L}_L e_R) .
$$

- SM: $K_S \to (\mu^+\mu^-)_{l=0}$ and $K_L \to \pi^0\bar{\nu}\nu$ from O_{VLL} . \mathbf{r}
- Current bound sensitive to NP scales:
	- $\Lambda \sim 40$ TeV (vectorial) and $\Lambda \sim 130$ TeV (scalar).

Complementarity of $K_S \to (\mu^+\mu^-)_{l=0}$ and $K_L \to \pi^0 \nu\bar{\nu}$ µ

SM

 $\bar{\eta}$ also accessible at KOTO using $K_L \rightarrow \pi^0 \nu \bar{\nu}$.
Prospect: "ΚΟΤΟ step 2" aims to measure \bar{n}_λ

Prospect: "KOTO step 2" aims to measure $\bar{\eta}$ with precision of $\sim 14\%$.

[J-PARC white paper 2110.04462]

NP Example 2112.05801

 \bullet In units of SM prediction: $R(X) = X/X_{SM}$:

$$
R(K_S \to \mu^+ \mu^-)_{l=0} = 1 + \text{function}\left(C_{SLR}^{NP}, C_{SRL}^{NP}, C_{VLL}^{NP}, C_{VLR}^{NP}, C_{VRL}^{NP}, V_{VRR}^{NP}\right)
$$

$$
R(K_L \to \pi^0 \bar{\nu} \nu) = 1 + \text{function}\left(C_{VLL}^{NP}, C_{VRL}^{NP}\right).
$$

- $K_S \to (\mu^+\mu^-)_{l=0}$: sensitivity to RH leptonic currents + scalar operators.
- µ Complementary NP sensitivity.