Progress on $K_{\text{L}} \to \mu^+ \mu^-$ from lattice QCD

En-Hung CHAO

Columbia University

September 18, 2023 @ CKM 2023

Based on on-going work with Norman Christ

Outline

- 1. Introduction
- 2. Formalism
- 3. Numerical implementation
- 4. Preliminary results
- 5. Summary and outlook

Introduction

- **►** In the Standard Model, $K_L \rightarrow \mu^+\mu^-$ comes in at one-loop level with exchange of two W-bosons or two W - and a Z-boson (short-distance contribution, SD).
- **►** Precisely measured $Br(K_L \to \mu^+\mu^-) = 6.84(11) \times 10^{-9} \Rightarrow$ good test for the SM and potential interest for the physics beyond the SM. [BNL E871 Collab., PRL '00]
- \triangleright Current theory limitation is the long-distance contribution (LD) involving two-photon exchange entering at $\mathsf{O}(\mathsf{G_F}\alpha_\mathrm{QED}^2)$, parametrically comparable to the SD contribution: the real part of the amplitude is not well understood.

Formalism

If Strategy: perturbatively expanded kernel function in G_F and α_{QED} + Euclidean hadronic correlation function computed on the lattice.

$$
\begin{array}{lcl} {\cal A}_{\rm ss^{\prime}}(k^+,k^-) & = & e^4\, \int \!d^4p\, \int \!d^4u\, \int \!d^4v\, \, e^{-i\left(\frac{P}{2}+p\right)u}e^{-i\left(\frac{P}{2}-p\right)v} \frac{1}{(\frac{P}{2}-p)^2+m_\gamma^2-i\varepsilon}\cdot\frac{1}{(\frac{P}{2}+p)^2+m_\gamma^2-i\varepsilon} \\[0.4cm] & \times \frac{\overline{u}_s(k^-)\gamma_{l'}\left\{\gamma\cdot (\frac{P}{2}+p-k^+)+m_{\mu}\right\}\gamma_{l'}\nu_{s'}(k^+)}{(\frac{P}{2}+p-k^+)^2+m_{\mu}^2-i\varepsilon}\cdot\left\langle 0\left.\left|{\,T\left\{\right. J_{\mu}(u)J_{\nu}(v)\mathcal{H}_{W}(0)\right\}}\right|\right.\left.\left.\left.\right.\right.\\ \end{array}
$$

- **I** Analytic continuation of the kernel: \Rightarrow unphysical exponentially growing contribution from states lighter than the kaon at rest.
- \triangleright Finite number of such states on a finite lattice \Rightarrow explicit, precise subtraction of such is possible.

Formalism

Time-ordering and Wick rotation

- \triangleright Set an IR cutoff T and consider the possible intermediate states in the particular time-ordering $0 \le v_0 \le u_0$.
- \blacktriangleright The contribution from this time-ordering reads

$$
\begin{array}{l} \displaystyle \int_0^T\!du_0\,\int_0^{u_0}\!dv_0\,\int_{-\infty}^\infty\!dp_0\;e^{i\left(\frac{M_K}{2}+p_0\right)u_0}e^{i\left(\frac{M_K}{2}-p_0\right)v_0} \\ \times\,\tilde{\cal L}^{\mu\nu}(p)e^{-iE_nu_0}e^{-i\left(E_{n'}-E_n\right)v_0}\,\langle 0\,|J_\mu(0)|n\rangle\langle n|J_\nu(0)|n'\rangle\langle n'|\mathcal{H}_W(0)|\,K_L\rangle\,.\end{array}
$$

 \triangleright Under Wick rotation $u_0 \leftarrow -iu_0$, it converges at $T \to \infty$ iff

$$
|E'_n > M_K \quad (i) \quad \text{ and } \quad E_n + |\vec{p}| \ge M_K \quad (ii)
$$

Otherwise, unphysical exponential terms appear.

- \blacktriangleright Repeating the above analysis for all possible time-ordering and intermediate state, the two sources for the exponential terms are
	- 1. π^0 with zero spatial momentum, coming from $K_{\rm L}$ turned into π^0 by the weak Hamiltonian.
	- 2. $\pi\pi(\gamma)$ states with low kinetic energy, propagating between the electromagnetic currents.

Numerical implementation

▶ Lattice setup: Möbius Domain Wall fermion ensemble 24ID from the RBC/UKQCD collaboration.

Parameter	Value
$L^3 \times T \times L_s$	$24^3 \times 64 \times 24$
m_π [MeV]	142
M_K [Mev]	515
a^{-1} [GeV]	1.023

 \blacktriangleright Master formula:

$$
\mathcal{A}(t_{\rm sep}, \delta, x) \equiv \sum_{d \leq \delta} \sum_{u, v \in \Lambda} \delta_{v_0 - x_0, d} e^{M_K(v_0 - t_K)} K_{\mu\nu}(u - v) \langle J_\mu(u) J_\nu(v) \mathcal{H}_W(x) K_L(t_K) \rangle ,
$$

$$
\mathcal{H}_W(x) = \frac{G_F}{\sqrt{2}} V_{us}^* V_{ud}(C_1 Q_1 + C_2 Q_2),
$$

$$
Q_1 \equiv (\bar{s}_a \Gamma_\mu^L d_a)(\bar{u}_b \Gamma_\mu^L u_b), \quad Q_2 \equiv (\bar{s}_a \Gamma_\mu^L d_b)(\bar{u}_b \Gamma_\mu^L u_a).
$$

- **►** Control of the contaminations from π ⁰ and low-energy $\pi\pi\gamma$ states:
	- \blacktriangleright The unphysical π^0 contribution can be measured and subtracted exactly

$$
\frac{1}{2m_\pi}\sum_{\delta\geq 0}\sum_{u\in\Lambda}e^{(M_K-m_\pi)\delta}\left\langle 0|J_\mu(u)J_\nu(v)|\pi^0\right\rangle K_{\mu\nu}(u-v)\left\langle \pi^0|\mathcal{H}_W(v)|K_{\rm L}\right\rangle\,.
$$

I Control of the $\pi \pi \gamma$ -intermediate state: use several kernels with different $|u - v| \le R_{\text{max}}$.

En-Hung Chao (Columbia U)

$$
K_{\rm L} \to \mu^+ \mu^- \text{ from LQCD} \tag{6/10}
$$

Contractions

I Quark-connected Wick contractions for $\langle J_\mu(u)J_\nu(v)\mathcal{H}_W(x)K_L(t_K)\rangle$. Dashed line: $K_L(t_K)$, crosses: $\mathcal{H}_W(x)$, solid dots: $J_\mu(u)$ and $J_\nu(v)$

Preliminary results

Type 1 and 2

- \blacktriangleright Plateaux are formed at rather small value of δ .
- \blacktriangleright No unphysical contribution from the π^0 -intermediate state expected.
- **In** Consistency between results obtained with different t_{sep} 's, allowing for an error-weighted average.
- \triangleright Stable central values from different choices of R_{max} , evidence of the absence of sizeable unphysical contribution from the *ππγ* state.

Preliminary results

Type 3 and 4

- \triangleright Stochastic all-to-all propagator with Z-Möbius low modes allowing computing with multiple R_{max} .
- Expected exponentially-growing behavior due to the unphysical π^0 intermediate state.
- $▶$ Plateau after subtracting the π^0 contamination. No strong sign of the $\pi\pi\gamma$ contamination by increasing R_{max} .

Conclusions and outlook

- \triangleright A coordinate-space based lattice-QCD formalism for the $\mathsf{K}_\mathrm{L}\to\mu^+\mu^-$ decay is proposed, enabling the determination of the phenomenologically inaccessible real part of the decay amplitude.
- ▶ Numerical strategies allowing to deal with different connected topologies have been developed, with possibility of keeping the *ππγ* intermediate state under control.
- \blacktriangleright The so-far ignored disconnected part might not be negligible and can be much noisier due to the *η* intermediate state. More efficient sampling strategies will be needed.
- **I** Possible finite-volume effects to worry about due to the $\pi \pi \gamma$ state.

Back-up slides

Introduction

Various estimates Br(K^L [→] *^µ*

$\text{Br}(K_{\text{L}} \to \mu^+\mu^-) = 6.84(11) \times 10^{-9}$

- \triangleright SD contribution computed with RG technique β Buchalla & Buras '94], known to NNLO with the charm quark effect included: $0.79(12)\times 10^{-9}$ [Gorbahn & Haisch '06]
- \blacktriangleright LD absorptive (imaginary) part from optical theorem
	- **I** The 2γ cut dominates over other channels [Martin et al, PRD '70]

- **I** Estimate with the most recent $\Gamma(K_L \to \gamma \gamma)$ saturates the experimental KL2mu decay rate: ${\sf Br}(K_{\rm L}\to \mu^+\mu^-)=6.59(5)\times 10^{-9}$ [Ceccucci '17]
- \Rightarrow unitary bound for the LD amplitude.
- **I** Phenomenological attempts for the dispersive (real) part (+large- N_c)
	- **►** Chiral perturbation with $\pi^0/\eta/\eta'$ pole [Dumm & Pich, PRL '98]
		- \Rightarrow GMO-suppressed, needs to go beyond SU(3) $_f$ and include mixings.
	- ► Lowest-meson dominance for the $K_{\text{L}} \to \gamma^* \gamma^*$ transition form factor [Knecht et al, PRL '99]

Introduction

Lattice QCD

- Euclidean formulation of QCD regulated by the finite lattice spacing a (UV) and extent L (IR) with the $SU(3)_{\rm strong}$ gauge field treated as a background.
- **►** Positive (semi-)definite Boltzmann weight + gauge-invariant path-integral measure \Rightarrow suitable for Monte Carlo-based methods:

$$
\langle \mathcal{O} \rangle \equiv \int \mathcal{D}[U] e^{-S[U]} \mathcal{O}[U] \approx \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{O}[U_n].
$$

 \blacktriangleright Case with fermionic composite operators:

$$
\langle \prod_{n} \psi_{i_n} \bar{\psi}_{j_n} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \Big(e^{-S_G[U]} \prod_{f \in \text{flavor}} \det[D_f] \Big) \times \Big\{ \Big(\prod_{n} \frac{\partial}{\partial \eta_{j_n}} \frac{\partial}{\partial \bar{\eta}_{i_n}} \Big) \Big[\prod_{f \in \text{flavor}} \exp \Big(\sum_{f \in \text{flavor}} \bar{\eta}_f D_f^{-1} \eta_f \Big) \Big] \Big\} \Big|_{\eta = \eta' = 0},
$$

 \Rightarrow each quark line leads to a D_f^{-1} evaluated in the gauge background.

 \triangleright Connection to the physical world:

- \triangleright Setting the scale (a) to a physical value.
- ▶ Formalism Determination of the "pion mass" of each ensemble.
- Extrapolation to the physical point: $(a, L, m_\pi) \to (0, \infty, m_\pi^{\text{Phys.}})$

${\sf Intermezzo:} \ \ \pi^0 \rightarrow e^+e^- \scriptscriptstyle \text{\tiny [Christ et al, PRL '23]}$

 \blacktriangleright After radiative corrections $\mathrm{Br}(\pi^0\to e^+e^-,\exp)=6.86(27)_\mathrm{stat.}(23)_\mathrm{syst.}\times10^{-8}.$

- ▶ No intermediate state lighter than $\pi^0 \Rightarrow$ no unphysical exponential.
- \blacktriangleright Central value dominated by the quark-connected contribution (disc.∼ 3% conn.) but comparable errors on both.
- \blacktriangleright Final result: Re/Im-ratio from the lattice and reconstruct the real part based on the $\pi^0\to\gamma\gamma$ decay rate ⇒ more precise

 $J_\mu(u)$ $J_\nu(v)$ $J_\mu(u)$ $J_{\nu}(v)$

 $Re\mathcal{A} = 20.2(0.4)_{stat}(0.1)_{syst}(0.2)_{expt}$ eV ${\rm Br}(\pi^0\to e^+e^-)= 6.22(5)_{\rm stat}(2)_{\rm syst}\times 10^{-8}$

Formalism

The QED kernel $(1/2)$ [Christ et al '23, Zhao PhD thesis]

$$
\mathcal{A} = \int_{u,v} \mathcal{L}_{\mu\nu}(u-v) \langle 0 | \{ \mathrm{T} \{ J_{\mu}(u) J_{\nu}(v) \mathcal{H}_{\mathrm{W}} 0 \} | K_{\mathrm{L}} \rangle
$$

- \triangleright Wick rotation $u_0 \leftarrow -iu_0$
	- ⇒ integrating along $p_0 \leftarrow ip_0 \in i\mathbb{R}$ to keep the Fourier weight e^{ipu} unchanged.

▶ Unconventional contour avoiding the poles at $M_K/2 - |\vec{p}| \ge 0$

Formalism

The QED kernel (2/2)

 \blacktriangleright Numerical treatment:

1. Due to CP, the Lorentz structure of the kernel is given by

$$
\mathcal{L}_{\mu 0}(w) = \mathcal{L}_{0\nu}(w) = 0, \quad \mathcal{L}_{ij}(w) = \frac{\epsilon_{ijk}w^k}{|\vec{w}|^2}L(w^0, |\vec{w}|)
$$

2. Cauchy's theorem to get the pole on the p^0 -plane, keeping the $i\varepsilon$.

- 3. Principal value prescription for the $|\vec{p}|$ -integral due to terms of type $\frac{1}{x-i\varepsilon}$.
- Finite in the $|\vec{w}| \to 0$ limit but exponentially growing with $w^0 \to \infty$ \Rightarrow suppressed for heavy intermediate states in the Eucl. hadronic correlator.

$$
L^{re}(w^0,|\vec{w}|) = 4m_e\alpha^2 \left\{\ln\left(\frac{1+\beta}{1-\beta}\right)\oint_0^\infty \frac{\mathrm{d}|\vec{p}|}{M_{\pi}^2\beta} \frac{e^{-|\vec{p}||w^0|}}{(\vec{p}^2 - \frac{M_{\pi}}{2})^2} F(|\vec{p}||\vec{w}|)H(|\vec{p}|,|w^0|) + \ldots \right\},\,
$$

$$
H(|M_{\pi}|, |w^0|) \equiv \left[\frac{M_{\pi}}{2}\sinh(\frac{M_{\pi}}{2}|w^0|) + |\vec{p}|\cosh(\frac{M_{\pi}}{2}|w^0|)\right],
$$

$$
F(x) \equiv \cos(x) - \frac{1}{x}\sin(x).
$$

Numerical implementation

Some technical details

- \triangleright Use of the (z-)Möbius accelerated Domain Wall Fermion solver: two-level solve where the loose inner solver solves the Dirac equation with a low-mode deflated z-Möbius operator.
- \triangleright Coulomb-gauge-fixed wall sources to better overlap with the pseudoscalar meson ground states at large time-separation $t_{\rm sen}$.
- \blacktriangleright Randomly distributed reference points to sample the volume.

Study of the unphysical π^0 contribution

$$
\frac{1}{2m_\pi}\sum_{\delta\geq 0}\sum_{u\in\Lambda}e^{(M_K-m_\pi)\delta}\left\langle 0|J_\mu(u)J_\nu(v)|\pi^0\right\rangle K_{\mu\nu}(u-v)\left\langle \pi^0|\mathcal{H}_\mathrm{W}(v)|K_\mathrm{L}\right\rangle
$$

 $K_{\text{L}} \rightarrow \mu^+ \mu^-$ from LQCD 8 / 13

.

Study of the unphysical π^0 contribution

$$
\frac{1}{2m_\pi}\sum_{\delta\geq 0}\sum_{u\in\Lambda}e^{(M_K-m_\pi)\delta}\left\langle 0|J_\mu(u)J_\nu(v)|\pi^0\right\rangle K_{\mu\nu}(u-v)\left\langle \pi^0|\mathcal{H}_\mathrm{W}(v)|K_\mathrm{L}\right\rangle
$$

.

Preliminary results

Type 1 and 2

- \blacktriangleright No unphysical π^0 state expected.
- \triangleright Construct blocks according to the t_{sep} dependence. E.g. Type 1 (a).

$$
\mathcal{A}_1^{\text{T1D1a}}(t_{\text{sep}}, \delta, x) = \sum_{d \leq \delta} \sum_{\vec{z} \in \Lambda_0} \delta_{z_0 - x_0, d} e^{M_K(z - t_K)} \operatorname{Tr}_{\mathcal{C}} \left[\hat{F}_{\nu \rho}^1(z, x, t_{\text{sep}}) \right] \operatorname{Tr}_{\mathcal{C}} \left[G_{\nu \rho}(z, x) \right].
$$

 \blacktriangleright Convolution with the kernel performed with Fast Fourier Transform

$$
\hat{\mathcal{F}}_{\nu\rho}(z,x,t_{\rm sep})\equiv\sum_{u}\mathcal{K}_{\mu\nu}(u-v)\mathcal{F}_{\mu\rho}(u,t_{\rm sep})=\mathcal{F}^{-1}\left[\tilde{\mathcal{K}}_{\mu\nu}(-\rho)\tilde{\mathcal{F}}_{\mu\rho}(\rho,t_{\rm sep})\right].
$$

Preliminary results

Type 3 and 4

All-to-all propagator estimator with Z-Möbius low modes h_i

$$
\hat{L}(x,y) = \sum_{i=1}^{N_{\rm ev}} V^{45'} \left[\lambda_i^{-1} h_i h_i^{\dagger} \right]^{5'} U^{5'4} - \sum_{i=1}^{N_{\rm ev}} V^{45'} \left[\lambda_i^{-1} h_i h_i^{\dagger} \right]^{5'} U^{5'4} \sum_{j=1}^{N_{\rm hits}} \xi_j \xi_j^{\dagger} + V^{45} \left[D^{-1} \right]^5 U^{54} \sum_{j=1}^{N_{\rm hits}} \xi_j \xi_j^{\dagger} ,
$$

- **►** Choice for the stochastic source ξ : \mathbb{Z}_2 time-diluted source for Type 3 and Gaussian volume source for Type 4.
- Reuse of the data for different kernels (only M and P are kernel dependent). E.g. building blocks for Type 3:

$$
\begin{aligned} \hat{\mathcal{C}}_q^a (t_{\mathrm{sep}}, \delta, \nu) &= \quad & \sum_{i=1}^{N_{\mathrm{ev}}} \left\langle M_i(\nu), N_{q,i}^a(t_{\mathrm{sep}}, \delta, \nu) \right\rangle - \frac{1}{N_{\mathrm{hits}}} \sum_{i=1}^{N_{\mathrm{ev}}} \sum_{j=1}^{N_{\mathrm{hits}}} \left\langle w_i^{\prime}(z), \xi_j(z) \right\rangle \left\langle P_j(\nu), N_{q,i}^a(t_{\mathrm{sep}}, \delta, \nu) \right\rangle \\ & + \frac{1}{N_{\mathrm{hits}}} \sum_{j=1}^{N_{\mathrm{hits}}} \left\langle P_j(\nu), Q_{q,j}^a(t_{\mathrm{sep}}, \delta, \nu) \right\rangle \, . \end{aligned}
$$

 \blacktriangleright Unphysical π^0 intermediate state contamination, expected by inspecting the quark flows, needs to be removed.

Unphysical π^0 from direct exp. fit

The disconnected diagram

