## Rare Kaons on the lattice

Ryan Hill

RBC-UKQCD

19<sup>th</sup> September 2023 CKM 2023

Phys. Rev. D 107, 114512 (2023) [arXiv:2202.08795]



## The RBC & UKQCD collaborations

### University of Bern & Lund Dan Hoying

### BNL and BNL/RBRC

Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Raza Sufian Tianle Wang

#### CERN

Andreas Jüttner (Southampton) Tobias Tsang

## Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

### University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

### Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Maxwell T. Hansen Tim Harris Rvan Hill Raoul Hodgson Nelson Lachini 7i Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

#### LLNL

Aaron Meyer

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki <u>Peking University</u> Xu Feng

## University of Regensburg

Davide Giusti Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

#### RIKEN CCS

Yasumichi Aoki

### University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

### University of Southampton

Alessandro Barone Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Nikolai Husung Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

#### <u>Stony Brook University</u> Fangcheng He

Sergey Syritsyn (RBRC)

- Rare Kaon decays provide a rich environment for precision tests of the Standard Model
- Semileptonic processes  $K \to \pi \ell \bar{\ell}$ ,  $K \to \pi \nu \bar{\nu}$
- Does Lattice QCD fit into this picture?
- Today's story:  $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ 
  - $\rightarrow$  Long-distance dominated
  - $\rightarrow$  Simplest lattice description
  - $\rightarrow$  Excellent testing ground for lattice formalism

- $K \to \pi \ell \bar{\ell}$  decays proceed *via* flavour-changing neutral current  $\to$  Highly suppressed; sensitive to new physics
- $\bullet~{\rm CP}{\rm -conserving}$  processes dominated by virtual- $\gamma{\rm -exchange^1}$ 
  - $\rightarrow$  Primarily long-distance quantities
  - $\rightarrow$  Well-suited to lattice QCD techniques
- $K_S \rightarrow \pi^0 \ell^+ \ell^-$  very experimentally challenging  $\rightarrow$  Focus lattice calculations on  $K^+ \rightarrow \pi^+ \ell^+ \ell^-$
- Results anticipated for 2021-2024 NA62 run  $\rightarrow K^+ \rightarrow \pi^+ \mu^+ \mu^-$  recently published for 2017-2018 dataset<sup>2</sup>  $\rightarrow$  Additional theoretical input is timely

<sup>2</sup>JHEP 11 (2022) 011 [arXiv:2209.05076]

<sup>&</sup>lt;sup>1</sup>JHEP 08 (1998) 004 [arXiv:hep-ph/9808289]

# Background

# Background

- Theoretical framework for lattice computations of  $K \to \pi \ell \bar{\ell}$ and  $K \to \pi \nu \bar{\nu}$  first published by Isidori, Martinelli, and Turchetti (2006)<sup>1</sup>
- Extended for full evaluation by RBC-UKQCD collaborations  $\rightarrow K^+ \rightarrow \pi^+ \ell^+ \ell^-$  (2015)<sup>2</sup>  $\rightarrow K^+ \rightarrow \pi^+ \nu^+ \nu^-$  (2016)<sup>3</sup>
- Proof-of-concept: RBC-UKQCD Exploratory calculations  $\rightarrow K^+ \rightarrow \pi^+ \ell^+ \ell^- (2016)^4$  $\rightarrow K^+ \rightarrow \pi^+ \nu^+ \nu^- (2017)^{5-6}$ , (2019)<sup>7</sup>
- Now: Production runs

Phys. Lett. B 633, 75 (2006) [arXiv:hep-lat/0506026]
 Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094]
 Phys.Rev. D 93 (2016) 114517 [arXiv:1605:04442]
 Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585]
 Phys.Rev.Lett. 118 (2017) 252001 [arXiv:1701.02858]
 Phys.Rev. D 98 (2018) 074509 [arXiv:1806.11520]
 Phys. Rev. D 100 (2019) 114506 [arXiv:1910.10644]

• Long-distance Minkowski amplitude:

$$\mathcal{A}_{\mu}(q^2) = \int d^4x \langle \pi(\mathsf{p}) | T \left[ J_{\mu}(0) \mathcal{H}_{W}(\mathsf{x}) 
ight] | \mathcal{K}(\mathsf{k}) 
angle$$

• Re-expressed using EM gauge invariance<sup>1 2</sup>:

$$\begin{aligned} \mathcal{A}_{\mu}(q^{2}) &= -i \frac{\mathcal{G}_{F}}{(4\pi)^{2}} \left[ q^{2} \left( k + p \right)_{\mu} - \left( M_{K}^{2} - M_{\pi}^{2} \right) q_{\mu} \right] V(z) \\ q_{\mu} &= k_{\mu} - p_{\mu}, \\ z &= q^{2} / M_{K}^{2}, \\ V(z) &= a + bz + V^{\pi\pi}(z) \end{aligned}$$

## • Goal is to compute *a*, *b*

<sup>1</sup>JHEP 08 (1998) 004 [arXiv:hep-ph/9808289]

<sup>2</sup>Rev. Mod. Phys. 84, 399 (2012) [arXiv:1107.6001]

• Long-distance Minkowski amplitude:

$$\mathcal{A}_{\mu}(q^2) = \int d^4x \langle \pi(\mathsf{p}) | \mathcal{T} \left[ J_{\mu}(0) \mathcal{H}_{W}(\mathsf{x}) 
ight] | \mathcal{K}(\mathsf{k}) 
angle$$

- $J_{\mu}(0)$  Electromagnetic current
- $H_W(x) \Delta S = 1$  effective weak Hamiltonian density

$$\begin{aligned} H_{W}(\mathbf{x}) &= \frac{G_{F}}{2} V_{us}^{*} V_{ud} \sum_{j=1}^{2} C_{j} \left( Q_{j}^{u} - Q_{j}^{c} \right) \\ Q_{1}^{q} &= [\bar{s} \gamma_{\mu}^{L} d] [\bar{q} \gamma^{L,\mu} q] \\ Q_{2}^{q} &= [\bar{s} \gamma_{\mu}^{L} q] [\bar{q} \gamma^{L,\mu} d], \\ \gamma_{\mu}^{L} &= \gamma_{\mu} (1 - \gamma_{5}) \end{aligned}$$

Weak Hamiltonian  $H_W$  generates four diagram classes:



## EM insertions $J_{\mu}$ for the "Connected" topology



- Same insertions exist for other 3 topologies
- 5 EM insertions  $\times$  4 topologies = 20 diagrams total

## Background

• Minkowski and Euclidean spectral representations:

$$\mathcal{A}_{\mu}(\mathbf{k}, \mathbf{p}) = +i \int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{w} | K(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E + i\epsilon} - i \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi(\mathbf{p}) | H_{w} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p}) + i\epsilon}$$

$$\begin{aligned} A^{E}_{\mu}(\mathbf{k},\mathbf{p}) &= \lim_{T_{A},T_{B}\to\infty} I_{\mu}(T_{a},T_{b},\mathbf{k},\mathbf{p}), \\ I_{\mu}(T_{a},T_{b},\mathbf{k},\mathbf{p}) &= -\int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{p})|J_{\mu}|E,\mathbf{k}\rangle\langle E,\mathbf{k}|H_{w}|K(\mathbf{k})\rangle}{E_{K}(\mathbf{k})-E} \left(1-e^{[E_{K}(\mathbf{k})-E]T_{a}}\right) \\ &+ \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi(\mathbf{p})|H_{W}|E,\mathbf{p}\rangle\langle E,\mathbf{p}|J_{\mu}|K(\mathbf{k})\rangle}{E-E_{\pi}(\mathbf{p})} \left(1-e^{-[E-E_{\pi}(\mathbf{p})]T_{b}}\right) \end{aligned}$$

•  $T_a$ ,  $T_b$  come from integration of normalised 4pt function:  $I_{\mu}(T_a, T_b, \mathbf{k}, \mathbf{p}) = e^{-[E_{\pi}(\mathbf{p}) - E_{K}(\mathbf{k})]t_J} \int_{t_I - T_a}^{t_J + T_b} dt_H \widetilde{\Gamma}_{4\text{pt}}$ 

$$\begin{split} I_{\mu}(T_{a}, T_{b}, \mathbf{k}, \mathbf{p}) &= -\int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{w} | K(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E} \left( 1 - e^{[E_{K}(\mathbf{k}) - E]T_{a}} \right) \\ &+ \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi(\mathbf{p}) | H_{W} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p})} \left( 1 - e^{-[E - E_{\pi}(\mathbf{p})]T_{b}} \right) \end{split}$$

- Amplitude corresponds to limit  $T_a, T_b \rightarrow \infty$
- First line: π, ππ, and πππ on-shell intermediate states enter the s=0 spectral density (for physical masses)
   → E<sub>K</sub> > E<sub>π</sub>, E<sub>ππ</sub>, E<sub>πππ</sub>: Causes the T<sub>a</sub> exponential to diverge!
- Lattice can't take  $T_a, T_b \to \infty$

 $\rightarrow$  Must remove exponentially growing terms in  $\mathcal{T}_a$  due to intermediate states

- In addition to  $T_a$  divergence, there is a potentially quadratic divergence as  $J_{\mu}(0)$  and  $H_w(x)$  approach each other in the integral
- Using a conserved current for the electromagnetic current allows the quadratic divergence to be reduced to mass-independent logarithmic divergence *via* EM gauge invariance
- Using an explicit GIM mechanism exactly cancels the mass-independent logarthmic divergence
   → Difference of two diagrams differring only by loop quark flavour
- Alternatively, log divergence could be dealt with in a 3-flavour theory with an alternative renormalisation

# Lattice Calculation

# $K\to \pi \ell \bar\ell$

## Theoretical proposal:

• Prospects for a lattice computation of rare kaon decay amplitudes: I,  $K \rightarrow \pi \ell^+ \ell^-$  decays RBC-UKQCD (2015) Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094]

## Existing results:

• First exploratory calculation of the long distance contributions to the rare kaon decay  $K \to \pi \ell^+ \ell^-$ RBC-UKQCD (2016)

Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585]

• Simulating rare kaon decays  $K \rightarrow \pi \ell^+ \ell^-$  using domain wall lattice QCD with physical light quark masses RBC-UKQCD (2023) Phys. Rev. D 107, 114512 (2023) [arXiv:2202.08795]

# $K\to \pi \ell \bar\ell$

Theoretical proposal:

• Prospects for a lattice computation of rare kaon decay amplitudes: I,  $K \rightarrow \pi \ell^+ \ell^-$  decays RBC-UKQCD (2015) Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094]

Existing results:

• First exploratory calculation of the long distance contributions to the rare kaon decay  $K \to \pi \ell^+ \ell^-$ RBC-UKQCD (2016)

Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585]

• Simulating rare kaon decays  $K \rightarrow \pi \ell^+ \ell^-$  using domain wall lattice QCD with physical light quark masses RBC-UKQCD (2023) Phys. Rev. D 107, 114512 (2023) [arXiv:2202.08795] RBC-UKQCD Exploratory study (2016)<sup>1</sup>:

- 2+1 flavour,  $L^3 imes T = 24^3 imes$  64,  $a^{-1} = 1.78~{
  m GeV}$
- ${\sim}430~{\rm MeV}$  pion,  ${\sim}625~{\rm MeV}$  Kaon
  - $\rightarrow$  Only single- $\pi$  intermediate state enters spectral density
- Shamir Domain Wall Fermions: good chiral symmetry  $\rightarrow$  simplified renormalisation

<sup>&</sup>lt;sup>1</sup>Phys.Rev. D 94 (2016) 114516 [arXiv:1608.07585]

# Exploratory Calculation (2016)



## Exploratory Calculation (2016)



RBC-UKQCD physical-point calculation  $(2023)^1$ :

- 2+1 flavour,  $L^3 imes T = 48^3 imes 96$ ,  $a^{-1} = 1.73~{
  m GeV}$
- Physical Pion and Kaon masses
  - $\rightarrow$  Expensive calculation!
  - $\rightarrow$  Energy budget allows  $\pi$ ,  $\pi\pi$ ,  $\pi\pi\pi$  intermediate states
- Three non-physical charm masses

 $\rightarrow$  Physical charm not simulatable with the action used for light quarks (next slide)

- $\rightarrow$  Critical to use the same action for GIM cancellation
- $\rightarrow$  Therefore need to adopt non-physical charm masses
- $\bullet$  Disconnected diagrams omitted: expected  ${\sim}10\%$  systematic

<sup>&</sup>lt;sup>1</sup>Phys. Rev. D 107, 114512 (2023) [arXiv:2202.08795]

Variance reduction techniques:

- zMöbius Domain Wall Fermions
  - $\rightarrow$  Significantly cheaper than Möbius DWF but requires a bias-correction step

 $\rightarrow$  Allows statistics to be accumulated on a cheaper estimator and then be shifted to the full Möbius action

- zMöbius deflated with 2000 low-modes
   → Further accelerates solve times
- All-Modes-Averaging (AMA) technique applied to zMöbius to improve stats : cost ratio
- Sparse Z<sub>2</sub> noise sources for loop estimators
   → Noise source reduces effect of local gauge fluctuation on loop propagators
  - $\rightarrow$  Sparsening further improves stats : cost ratio

Intermediate states:

- π IS: Significant contribution, must be removed
   → Use same techniques employed in the exploratory study
- $\pi\pi$  IS: Introduced by lattice artefacts
  - ightarrow At practical values of  $T_a$ , expected to be %-level effect<sup>1</sup>
  - $\rightarrow$  Negligible contribution for now
- $\pi\pi\pi$  IS: Compare decay widths of  $K_S \to \pi\pi$  to  $K_{S,+} \to \pi\pi\pi$ :  $\to$  Factor  $\sim \mathcal{O}(1/500)$  further suppressed beyond  $\pi\pi^1$ 
  - $\rightarrow \pi\pi\pi$  completely negligible for forseeable future

<sup>&</sup>lt;sup>1</sup>Phys.Rev. D. 92 (2015) 094512 [arXiv:1507.03094]

# Results



- $A_0 = 0.00035(180)$
- V(z) = -0.87(4.44)
- $V(z) \approx V(0) = a^+$  for our choice of kinematics
- Form factor unfortunately unresolved, but let's investigate why...



Exploratory Study

Physical-Point

- Plots show the GIM subtraction for the saucer diagram constructed from the *I* and *c* quark correlators
- GIM subtraction does not lead to a cancellation of errors with physical light masses

## Results





• Leading diagonal shows *I-c* timeslice cross-correlation

• Much reduced correlation between *l* and *c* loop quark diagrams at physical point due to large mass difference

Statistical error cannot be overcome by square-root scaling of additional statistics <u>alone</u> in near future.

- $\rightarrow$  Potential ways forward:
  - Improvement of estimators for up- and charm-loop propagators
    - $\rightarrow$  Similar to issues faced in disconnected diagrams
  - Forgo explicit charm contribution to GIM loop and handle *via* different renormalisation procedure

 $\rightarrow$  Look to  $K \rightarrow \pi \nu \bar{\nu}$  for lessons learned

 $\rightarrow$  Combination of algorithmic improvements and next-generation computers makes a competitive lattice result appear feasible in the coming years.

 $\rightarrow$  Currently investigating improved loop estimators - stay tuned!

# Summary

- $\bullet$  Viability of  $K^+ \to \pi^+ \ell^+ \ell^-$  demonstrated at physical point
- Next steps identified: Gain control of GIM loop stochastic estimators (in progress!)
- Challenging calculation with physical kinematics achieved. Competitive errors in the next few years?

# **Backup Slides**

Two approaches for the removal of on-shell single- $\pi$  intermediate state:

- Reconstruct the single- $\pi$  contribution and explicitly subtract it  $\rightarrow$  Stable state, can be constructed from lattice QCD correlation functions
- Shift the weak Hamiltonian with an  $\overline{s}d$  scalar current,  $H'_w(x) = H_w(x) + c_s(\mathbf{k})\overline{s}(x)d(x)$   $\rightarrow C_s(\mathbf{k})$  tuned to condition  $\langle \pi(\mathbf{k})|H'_W(0,\mathbf{k})|K(\mathbf{k})\rangle = 0$ 
  - $\rightarrow$  Cancels the single- $\pi$  intermediate state
  - $\rightarrow$  Does not contribute to amplitude

- Calculation performed with **Grid**<sup>1</sup>, and the Grid-based workflow management software **Hadrons**<sup>2</sup>
- 87 configurations
- 6 time translations
- 10 noise sources
- Time translations and noise sources used in two-step AMA to bias-correct zMöbius propagators and accumulate statistics

<sup>&</sup>lt;sup>1</sup>https://github.com/paboyle/Grid

<sup>&</sup>lt;sup>2</sup>https://github.com/aportelli/Hadrons

## Setup

- $\bullet\,$  Sparse noise source partially covers lattice, with most sites set to  $0^1\,$
- Cover full volume by computing source translations until full volume covered
- We require  $2^4 = 16$  sparse sources to cover full volume





• Sparse noise has a clear advantage over full volume and time-diluted sources for estimating quark loops in terms of stats : cost ratio

