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Light new physics ?
Three examples: Goldstone bosons

Hidden Photons

Sterile Neutrinos



Light new physics ?
First example: Goldstone bosons
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V (�) = µ2��† + � (��†)2

� = (f + s)eia/f

m2
h = |µ2|m2

s = 4�f2

m2
a = 0

Every spontaneously broken 
continuous symmetry gives rise to 
massless spin-0 fields.
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Since the GB corresponds to the phase of a complex field, it is 
protected by a shift symmetry

it is protected by a shift symmetry

This symmetry forbids a mass term, and all couplings are 
suppressed by the UV scale
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Goldstone bosons



An exactly massless boson is very problematic. 
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The global symmetry can be broken by 
explicit masses or anomalous effects

Small couplings correspond to small masses and a 
decoupled NP sector.
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The most famous example is the pion

m2
⇡ =

mu +md

f2
⇡

⇤3
QCD ⇡ (140MeV)2

hq̄LqRi = ⇤3
QCD ⇡ GeV3

LQCD = q̄Li /D qL + q̄Ri /D qR +mq q̄LqR

⇢, P,N

⇡

The pion mass is controlled by the explicit breaking 
through light quark masses

10

Goldstone bosons



The most famous example is the pion

m2
⇡ =

mu +md

f2
⇡

⇤3
QCD ⇡ (140MeV)2

hq̄LqRi = ⇤3
QCD ⇡ GeV3

LQCD = q̄Li /D qL + q̄Ri /D qR +mq q̄LqR

The pion mass is controlled by the explicit breaking 
through light quark masses

11

NP at f

axion

Goldstone bosons



12

2 The E↵ective ALP Lagrangian

In this section we summarise the important results from [55] and [30] which are relevant for
the phenomenology of an axion-like particle in flavor observables and in exotic decays of the
Higgs and Z bosons. In particular, we stress that renormalization-group (RG) e↵ects generate
ALP couplings to all gauge bosons, leptons and quarks even if only a single ALP coupling is
present at the UV scale. This has important consequences for the branching ratios of the ALP
to SM particles and ignoring RG e↵ects would lead to di↵erent constraints for any given ALP
model. In addition, many of the ALP searches discussed in Section 3 are relevant for a larger
class of models than one would naively expect from the coupling structure in the UV.

2.1 The ALP Lagrangian at the UV scale

We consider a new pseudoscalar resonance, a, whose couplings to SM fields are protected by
an approximate shift symmetry a ! a + c at the classical level which is only broken by the
mass term m

2
a,0. The most general e↵ective Lagrangian including operators of dimension up

to 5 and invariant under the SM gauge group reads [56]
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(2.1)

Here Ga
µ⌫ , W

A
µ⌫ and Bµ⌫ are the field strength tensors of the SM gauge group SU(3)c, SU(2)L

and U(1)Y , B̃µ⌫ = 1
2✏

µ⌫↵�
B↵� etc. (with ✏

0123 = 1) are the dual field strength tensors, and
↵s = g

2
s/(4⇡), ↵2 = g

2
/(4⇡) and ↵1 = g

0 2
/(4⇡) denote the corresponding coupling parameters.

The sum in the first line extends over the chiral fermion multiplets F of the SM and the Higgs
doublet is denoted by �. The quantities cF are 3⇥3 hermitian matrices in generation space
and together with the ALP couplings to gauge bosons cGG, cWW , cBB and to the Higgs doublet
c�, there are 49 real parameters in the Lagrangian. The five global U(1) symmetries of the
SM (individual lepton numbers, baryon number, and hypercharge) can be used to remove
five of these, resulting in 44 real physical parameters. This can be seen by examining the
transformation of the full Lagrangian under these global symmetries. We define QF as the
charge matrix of the fermion F and Q� as the charge of the Higgs doublet under one of these

symmetries, such that e.g. Q(B)
d  d =

1
3  d gives the baryon number of the down type quarks.

Then a field redefinition

 F ! exp

✓
ic
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QF
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ic
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◆
�, (2.2)
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Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)

Most general dimension five Lagrangian at the UV scale 

Axionlike particles

All couplings are suppressed by the UV scale f
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coupling to the Higgs current

coupling to gluons
coupling to SU(2)L gauge bosons
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F=Q,u,d,L,e
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This Lagrangian captures all possible ALP coupling structures up 
to dimension 5.

Axionlike particles

It is easy to imagine scenarios in which a single coupling 
dominates:

For example: A UV theory in which the ALP couples only to SU(2)L 
gauge bosons
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ALPs at different scales
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ALPs at different scales
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•The gauge boson couplings do not run  

• Neither are there matching contributions at 1-loop 

MB, Neubert, Renner, Schnubel,  
Thamm, 2102.13112

MB, Neubert, Renner, Schnubel,  
Thamm,  JHEP 04 (2021) 063 

Chala et al.,   
Eur.Phys.J.C 81 (2021) 2

section captures the leading contributions in each coupling irrespective of the relative magni-
tude of the ALP–boson and ALP–fermion couplings in the high-energy theory. We emphasize,
however, that in cases where the coe�cients cV V and cF are of similar magnitude, one-loop
diagrams involving the coe�cients cV V have the same scaling as two-loop diagrams involving
the coe�cients cF , see Figure 2. For consistency, we thus include all two-loop contributions
in the gauge couplings in the RG equations for the ALP–fermion couplings.

3 Renormalization-group evolution to the weak scale

The e↵ective Lagrangian (1) is assumed to arise from integrating out some new heavy par-
ticles at a scale ⇤ = 4⇡f far above the weak scale. Assuming the ALP mass is small – of
order 100GeV or less – we can evolve the Wilson coe�cients and operators in the e↵ective
Lagrangian down to the scale of electroweak symmetry breaking by solving their RG equa-
tions. We now derive the explicit form of these equations, working consistently at two-loop
order in gauge couplings and one-loop order in Yukawa interactions. These are the lowest or-
ders at which these interactions contribute to the evolution equations for the ALP couplings.
In models in which the boson couplings are enhanced over the fermion ones, the two-loop
gauge contributions can give rise to the dominant evolution e↵ects. Two-loop corrections in
the Yukawa couplings, or mixed two-loop gauge–Yukawa contributions, are neglected in our
approach. They would give rise to small multiplicative corrections of the fermion couplings,
but they do not introduce new ALP coupling parameters on the right-hand side of the evo-
lution equations. Thus, there is no scenario in which these neglected two-loop contributions
could give rise to dominant e↵ects. Some technical details of our derivations are relegated to
Appendix A. The RG equations for the ALP couplings appearing in the alternative form of
the e↵ective Lagrangian in (9) can be derived from the equations below in a straightforward
way. They are discussed in Appendix B.

3.1 Derivation of the RG evolution equations

Pulling out one factor of ↵i in the definitions of the ALP couplings to gauge fields in (1)
ensures that the Wilson coe�cients cV V are scale independent (at least up to two-loop order
in gauge couplings), i.e.

d

d lnµ
cV V (µ) = 0 ; V = G,W,B . (17)

For the QCD coe�cient cGG this follows from the explicit calculations performed in [77], and
an analogous statement holds for cWW and cBB. This is di↵erent from the case of a scalar
(CP-even) field coupled to two gauge fields, in which the corresponding couplings exhibit a
non-trivial RG evolution starting at two-loop order [78, 79]. We have checked explicitly that
the one-loop diagrams involving the scalar Higgs doublet do not give rise to a scale dependence
of the coe�cients cWW and cBB either. The contributions from these graphs are absorbed by
the renormalization of the gauge couplings.

The Wilson coe�cients cF of the ALP interactions with fermions in (1) are scale-dependent
quantities and satisfy rather complicated RG equations. At one-loop order there are contri-
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Running and matching at the weak scale

• The running and matching of ALP fermion couplings receives 
various contributions

Bardeen et al. Nucl. Phys. B 535,(1998)  
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3 ,

cdd,ss(mt) ' cdd,ss(⇤) + 0.116 ctt(⇤)�
h
7.08 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

cbb(mt) ' cbb(⇤) + 0.097 ctt(⇤)�
h
7.02 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

ceiei(mt) ' ceiei(⇤) + 0.116 ctt(⇤)�
h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
↵t

⇡
ln

⇤2

m2
t

, (0.20)

7
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Flavor diagonal ALP-fermion couplings
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(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]
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As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)
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Flavor diagonal ALP-fermion couplings
ALP fermion couplings at the weak scale for f = 1TeV
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Flavor off-diagonal ALP-fermion couplings

are integrated out have been studied in detail in [? ]. One finds that

[ku(µw)]ij = [ku(⇤)]ij ; i, j 6= 3 ,

[kU(µw)]ij = [kU(⇤)]ij ; i, j 6= 3 ,

[kd(µw)]ij = [kd(⇤)]ij ,

[ke(µw)]ij = [ke(⇤)]ij ,

[kE(µw)]ij = [kE(⇤)]ij .

(0.24)

Note that for ku and kU we only need the entries where i, j 6= 3, since the top quark has been
integrated out in the e↵ective theory below the weak scale. For the o↵-diagonal elements of
the coe�cient kD one obtains the more interesting result

⇥
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⇤
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�
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⇥
�̂kD(µw)

⇤
ij
,

(0.25)

where the evolution functions U(µw,⇤) and It(µw,⇤) are defined as

U(µw,⇤) = �
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32⇡2
, It(µw,⇤) =

Z µw
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µ

3y2t (µ)

8⇡2
ctt(µ) , (0.26)

while the matching contribution [�̂kD(µw)]ij can be found in eq. (5.7) of [? ]. Via these
evolution functions, ALP couplings to any SM field at the UV scale will, at some loop order,
produce logarithmically-enhanced contributions to flavor-changing down-type quark couplings
below the electroweak scale. We will make use of this important point in Section ?? to place
new constraints on individual ALP couplings defined at the UV scale, by calculating their
flavor e↵ects to leading logarithmic approximation via these equations.

The above results simplify significantly if the ALP Lagrangian at the UV scale ⇤ respects
the principle of minimal flavor violation [? ]. One then finds that [? ]
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(0.28)

with xt = m2
t/m

2
W . The explicit solution for the evolution function It(µw,⇤) involves again

the ALP couplings ctt and c̃V V . For the reference scale f = 1TeV, one finds numerically (for
i 6= j)

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
. (0.29)
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evolution functions, ALP couplings to any SM field at the UV scale will, at some loop order,
produce logarithmically-enhanced contributions to flavor-changing down-type quark couplings
below the electroweak scale. We will make use of this important point in Section ?? to place
new constraints on individual ALP couplings defined at the UV scale, by calculating their
flavor e↵ects to leading logarithmic approximation via these equations.
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with xt = m2
t/m

2
W . The explicit solution for the evolution function It(µw,⇤) involves again

the ALP couplings ctt and c̃V V . For the reference scale f = 1TeV, one finds numerically (for
i 6= j)
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Flavor violation can come from the UV theory or from the SM
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Running below the EW scale
Running below the weak scale affects only flavor-diagonal ALP 
fermion couplings (running to 2 GeV)

Note the important fact that even under the assumption of minimal flavor violation the coef-
ficients [kD(⇤)]ij are not restricted to be flavor-diagonal. Instead,

⇥
kD(⇤)

⇤
ij
= V ⇤

tiVtj

⇣
[kU(⇤)]33 � [kU(⇤)]11

⌘
, (0.30)

which can be non-zero because minimal flavor violation allows the possibility that [kU(⇤)]33 6=
[kU(⇤)]11.

RG evolution below the weak scale

The flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in the approxi-
mation where the Yukawa couplings of the light quarks are set to zero). The flavor-diagonal
couplings cff (µ) are still scale dependent at low energies due to loop diagrams involving glu-
ons or photons. The evolution of these coe�cients from the scale µw = mt to the low scale
µ0 = 2GeV yields [? ]

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤)� 1.4ctt(⇤)� 0.6 cbb(⇤)

i
· 10�2

+Q2
q

h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2cbb(⇤)

i
· 10�5 ,

c``(µ0) = c``(mt) +
h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2cbb(⇤)

i
· 10�5 .

(0.31)

SR: Is there a sign error in the coe�cient of c̃GG(⇤)? For an ALP lighter than the
scale µ0, the interactions with hadrons and photons are a↵ected by non-perturbative hadronic
e↵ects. These can be studied in a systematic way using an e↵ective chiral Lagrangian.

0.4 ALP couplings to mesons in the chiral Lagrangian

At the scale µ0 ⇡ 2GeV it is appropriate to match the Lagrangian (0.18) to a chiral e↵ective
theory [? ? ? ? ]. The ALP–gluon coupling in the Lagrangian can be eliminated by
performing a chiral rotation of the quark fields,

q(x) ! exp


�iq�5 cGG

a(x)

f

�
q(x) , (0.32)

where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x). The
transformation parameters q are hermitian matrices, which we choose to be diagonal in the
quark mass basis. The condition Trq = 1 is necessary to remove the ALP–gluon coupling
from the Lagrangian. As long as this condition is satisfied, any choice of q leads to an e↵ective
chiral Lagrangian describing the same physics. One obtains

L
�
e↵ =

f 2
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8
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⇥
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3 ,

cdd,ss(mt) ' cdd,ss(⇤) + 0.116 ctt(⇤)�
h
7.08 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

cbb(mt) ' cbb(⇤) + 0.097 ctt(⇤)�
h
7.02 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

ceiei(mt) ' ceiei(⇤) + 0.116 ctt(⇤)�
h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
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⇡
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, (0.20)
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Matching to the chiral Lagrangian

The chiral Lagrangian + ALP then reads

Note the important fact that even under the assumption of minimal flavor violation the coef-
ficients [kD(⇤)]ij are not restricted to be flavor-diagonal. Instead,

⇥
kD(⇤)

⇤
ij
= V

⇤
tiVtj

⇣
[kU(⇤)]33 � [kU(⇤)]11

⌘
, (2.30)

which can be non-zero because minimal flavor violation allows the possibility that [kU(⇤)]33 6=
[kU(⇤)]11.

RG evolution below the weak scale

The flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in the approxi-
mation where the Yukawa couplings of the light quarks are set to zero). The flavor-diagonal
couplings cff (µ) are still scale dependent at low energies due to loop diagrams involving glu-
ons or photons. The evolution of these coe�cients from the scale µw = mt to the low scale
µ0 = 2GeV yields [30]

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤) � 1.4ctt(⇤) � 0.6 cbb(⇤)
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· 10�2
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· 10�5

.

(2.31)

SR: Is there a sign error in the coe�cient of c̃GG(⇤)? For an ALP lighter than the
scale µ0, the interactions with hadrons and photons are a↵ected by non-perturbative hadronic
e↵ects. These can be studied in a systematic way using an e↵ective chiral Lagrangian.

2.4 ALP couplings to mesons in the chiral Lagrangian

At the scale µ0 ⇡ 2GeV it is appropriate to match the Lagrangian (2.18) to a chiral e↵ective
theory [32, 64, 65, 77]. The ALP–gluon coupling in the Lagrangian can be eliminated by
performing a chiral rotation of the quark fields,

q(x) ! exp


�iq�5 cGG

a(x)

f

�
q(x) , (2.32)

where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x). The
transformation parameters q are hermitian matrices, which we choose to be diagonal in the
quark mass basis. The condition Trq = 1 is necessary to remove the ALP–gluon coupling
from the Lagrangian. As long as this condition is satisfied, any choice of q leads to an e↵ective
chiral Lagrangian describing the same physics. One obtains
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(2.33)

15where
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Matching to the chiral Lagrangian

The chiral Lagrangian + ALP then reads

Note the important fact that even under the assumption of minimal flavor violation the coef-
ficients [kD(⇤)]ij are not restricted to be flavor-diagonal. Instead,
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, (2.30)

which can be non-zero because minimal flavor violation allows the possibility that [kU(⇤)]33 6=
[kU(⇤)]11.

RG evolution below the weak scale

The flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in the approxi-
mation where the Yukawa couplings of the light quarks are set to zero). The flavor-diagonal
couplings cff (µ) are still scale dependent at low energies due to loop diagrams involving glu-
ons or photons. The evolution of these coe�cients from the scale µw = mt to the low scale
µ0 = 2GeV yields [30]
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SR: Is there a sign error in the coe�cient of c̃GG(⇤)? For an ALP lighter than the
scale µ0, the interactions with hadrons and photons are a↵ected by non-perturbative hadronic
e↵ects. These can be studied in a systematic way using an e↵ective chiral Lagrangian.

2.4 ALP couplings to mesons in the chiral Lagrangian

At the scale µ0 ⇡ 2GeV it is appropriate to match the Lagrangian (2.18) to a chiral e↵ective
theory [32, 64, 65, 77]. The ALP–gluon coupling in the Lagrangian can be eliminated by
performing a chiral rotation of the quark fields,

q(x) ! exp
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where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x). The
transformation parameters q are hermitian matrices, which we choose to be diagonal in the
quark mass basis. The condition Trq = 1 is necessary to remove the ALP–gluon coupling
from the Lagrangian. As long as this condition is satisfied, any choice of q leads to an e↵ective
chiral Lagrangian describing the same physics. One obtains
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15Turning on the weak interactions give rise to flavor changing 
couplings involving the ALP

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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Weak decays into axions in �PT

1 ALP-meson mixing and physical states

Starting with a very simple Lagrangian with only couplings of the ALP to gluons in the UV
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and rotate the ALP-gluon coupling away through a redefinition of the quark fields
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The chiral Lagrangian is constructed by identifying the currents in the quark theory and
identify them with the currents in the chiral Lagrangian,
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Besides the phase factor rescaling the quark fields (2) this also implies a shift of the covariant
derivative in the chiral theory
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Light new physics ?
Second example: gauge bosons (local symmetry breaking)

� = (f + s)eia/f

Interactions with the SM are either directly set by the gauge 
coupling or through kinetic mixing

mX = gXf
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Small gauge couplings imply small masses
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Light new physics ?

Hidden photons mixing with the SM photon or Z boson inherit 
the SM GIM mechanism and are strongly suppressed

Z
X

✏ / gXe

8⇡2
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m2

Bµ Xµ

MB, Foldenauer, Mosny, Phys.Rev.D 103 (2021) 7 
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Light new physics ?
Hidden photons can also interact directly with SM fermions if 
baryon number or lepton numbers are charged

Gauge anomaly cancellation and constraints from the CKM 
matrix force all couplings to SM fermions to be diagonal 
couplings at tree-level (apart from neutrinos)

B decays are suppressed

MB, Foldenauer, Mosny, Phys.Rev.D 103 (2021) 7 
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Flavor bounds on hidden photons
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Light new physics ?
Third example: sterile neutrinos
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Flavor bounds on sterile neutrinos
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Flavor bounds on sterile neutrinos
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Flavor bounds on sterile neutrinos

If neutrinos are Majorana they can mediate meson decays with 
lepton number violation

Atre, Han, Pascoli, and Zhang, JHEP 05 (2009) 030, [0901.3589].
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Flavor bounds on sterile neutrinos
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Conclusions

An axion or hidden photon could be the only light remnant of a 
heavy new physics sector out of reach of the LHC

Flavor bounds uniquely constrain axionlike particles with 
masses between 100 MeV and 10 GeV

Flavor transitions for hidden photons are very strongly suppressed 
and can’t compete with flavor conserving observables

42

Sterile Neutrinos can induce lepton number violating decays which 
would signal Majorana nature of neutrinos


