Global fit to $b \to c \tau \nu$

Syuhei Iguro

Inspire web page

18/09/2023

Santiago de Compostela Mainly based on 2210.10751 (v3 coming

and many papers with Teppei Kitahara, Yuji Omura, Ryoutaro Watanabe, Hantian Zhang, 2014 Monika Blanke, Ulrich Nierste, Fedele Marco, Andreas

$R_{D^{(*)}}$ anomaly Now persisting more than 10 years

SM: gauge symmetry guarantees

$$
R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau \nu)}{BR(B \to D^{(*)}l \nu)}, \ l = \mu, e
$$

The lepton flavor universality violating (LFUV) effect comes from the lepton mass

Hadronic form factors (FFs) uncertainty is largely cancelled in ratio, V_{ch} also

Good measure to test the LFUV and hence great window to new physics

Experimental update We had three new data this 1-year

① LHCb 2022 Oct. τ->μνν (2) LHCb 2023 Feb. Hadronic τ (τ_h) Belle II first result 2023 July τ_h Run 1 \sim 200fb⁻¹ Now we have data four experiments!

p-value got improved (0.92 x 10^{-3} ->0.33) = more consistent experiment

There are new data of relevant processes, $B_c \rightarrow J/\psi \tau v$, $B \rightarrow X_c \tau v$ EPS2023

Wish list: CMS B-parking, further Belle II data, LHCb Run 2, BaBar

SM prediction

Reference	R_D	R_{D^*}
Bernlochner, et al.	0.288(4)	0.249(3)
Iguro, Watanabe	0.290(3)	0.248(1)
Bordone, et al.	0.298(3)	0.250(3)
HFLAV2023	0.298(4)	0.254(5)

[New Lattice r](https://inspirehep.net/literature/1792126)esults for $B\rightarrow D^*$ are not conclus

Regarding the inconsistency of dispersive method based on Fermilab-MILC see

See next talk by Prim

3.3–4σ discrepancy without BaBar \sim 2.5-3

Larger (smaller) discre in R_D (R_{D^*}) . We will discuss impli to NP interpretation

Light lepton philic NP can not

Effective Lagrangian for b ->c τ ν

$$
H_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{VL}) O_{VL} + C_{VR} O_{VR} + C_{SR} O_{SR} + C_{SL} O_{S} \right]
$$

Dimension 6 due to the size of the discrepancy -> finite particle candidates

 $\theta_{SR} = (\bar{c} P_R b)(\bar{\tau} P_L \nu_{\tau})$ $\mathcal{O}_{SL} = (\bar{c} P_L b)(\bar{\tau} P_L \nu_{\tau})$ $\overline{O_{VL} = (\bar{c} \gamma^{\mu} P_L b)(\bar{\tau} \gamma^{\mu} P_L \nu_{\tau})}$ $Q_{VR} = (\bar{c}\gamma^{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu_{\tau})$ $O_T = (\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu_{\tau})$ Scalar Vector Tensor Operator basis

Relaxed BR($B_c^- \rightarrow \tau \bar{\nu}$) bound

 $\Gamma_{\text{Bc}} \propto m_Q^5$ + large error in -> large error for Γ_{Bc}

 H^-

E

candidates

W["](https://inspirehep.net/literature/1704733)

 $\begin{array}{|c|c|} \hline \rule{0pt}{12pt} \rule{0pt}{2.5pt} \rule{0pt}{2.5$

Current constraint

B.Grinstein et al 2105 $< 63\%$ M.Blanke et al $_{1811.0}$

Summary of model prediction: correlat

See also Angelescu et al, 2103.12504, Athron et al 2104.03691 for the previous version

$$
Full ≡ √xSM2 - xNP-best2 (σ) \n
$$
CSL = -0.88 ± 0.88i
$$
\n
$$
CSL = -8.9CT = 0.19
$$
\n
$$
CSL = 8.4CT = -0.07 ± 0.58i
$$
\n
$$
μB = μ
$$
\n
$$
CVL = 0.07 = CSR / (-3.7) × e-iφR, φR = 0.54π Pu
$$
\n
$$
CSR = -0.2
$$
\n
$$
CSR = -0.2
$$
$$

Similar go

Model discrimination is possible via these correlated predictions Also, τ polarization in $B\to D^{(*)}\tau \nu$ is important @ Belle II

7

NP model dependent recent topics

- Revived Charged Higgs interpretation with sizable C9
- Testing U_1 LQ with EDM experiments
- LHC proposal: τν+b final state
- Another revival, V_2 leptoquark \perp

Since the size of the deviation implies up to O(1) TeV new particle, LHC searches should see something already or soon!

If time allows

Scalar [oper](https://arxiv.org/abs/2201.06565)ator revived $o_{sL} = \overline{(c_iP_L)}$ Iguro 2201.

Thanks to the relaxed upper bound from $$ scalar scenario is still viable! Only scalar can (slightly) enhance $F_L^{D^*}$

 $F_{L\ exp}^{D^*} = 0.60 \pm 0.09, \ \ F_{L\ SM}^{D^*} = 0.46$

We need complex WC => Complex Yukawa in type III (General) 2

 $\frac{BR(B_C \to \tau \bar{v})}{\sigma_{1.0}^2 - 1.0}$ 2023 Sept.
 $\frac{1}{24.0}$ - 0.5 0.0 0.5 1.0 1.5 Reinterpreting **τν resonance search** from the excludes the scenario with $m_{H^+} > 400$ GeV

There is no data available for $m_{H^+} < 400$ Additional b-jet would suppress the trigger

Closing the low mass window with τν+b search!

180GeV $< m_{H^+} <$

Iguro, Zhang, Blanke 2202.10468

NP signal event number (with parameters to explain the anomaly) is comparable **with SMBG**

Flavor univers[al C](https://inspirehep.net/literature/2682353)9 [?](https://inspirehep.net/literature/2682353)

LHCh305

SM (Lattice)

 25

 J/ψ

Iguro 2302.08935 Iguro Omur

LHCb

 $\rightarrow \phi \mu^+ \mu^-) (\rm{d} q^2$ (GeV $^{-2} c^4$

 $4B(B_{z}^{0}$

Green and yellow are interesting $C_9^U \sim -1$

Bs mixing and di-jet also put interesting constraints

Stringent upper bound from same sign top (SST) sear 2307.14759

Although this can be avoided by taking m_A=m_H at $m_{A,H}$ <m_t is also excluded by multi tau lepton se

O(1) GeV turning or m_t < $m_{A,H}$ < 200 GeV

Bridging $R_{D^{(*)}}$ and EDMs [Iguro, Kit](https://inspirehep.net/literature/1755113)ahara 23

U(2) flavored U1 LQ : leading candidate (Zurich model)

Recent finding

See also 2002.01400, 18

 $d_n \sim -d_p = O(10^{-26-27})$ e cm, well within future reach while $d_e \sim 0$ (1)

Improving LHC se[arch in](https://inspirehep.net/literature/1964639) τν mode Ω with again, additional b-tagging

Run 2 data is enough to judge the R_2 LQ scenario! Comparable sensitivity with conventional ττ+b searches but not performed experimentally excess in ττ final state @CMS (not in ττ +b), no excess @ AT

See also Kingman 220 Iguro, Omura 2306.0

 V_2 (3, 2, 5/6) contributes to ($\bar{c}P_Rb$)($\bar{\tau}P_Lv$): this solution revived recently! $\mathcal{L}_{V_2} = h_1^{ij} (\overline{d_i^C} \gamma_\mu P_L L_i^b) \varepsilon^{ab} V_2^{\mu,a} + h_2^{ij} (\overline{Q_i^{C,a}} \gamma_\mu P_R e_j) \varepsilon^{ab} V_2^{\mu,b} + h_3^{ij} (\overline{Q_i^C} \gamma_\mu P_R u_j) V_2^{\mu*} + h.c.$ Assigning approximate τ number to this doublet the fermion interaction is given as

$$
h_1^{ij} = \begin{pmatrix} 0 & 0 & h_1^{13} \\ 0 & 0 & h_1^{23} \\ 0 & 0 & \frac{h_1^{33}}{1} \end{pmatrix}, \quad h_2^{ij} = \begin{pmatrix} 0 & 0 & h_2^{13} \\ 0 & 0 & \frac{h_2^{23}}{2} \\ 0 & 0 & \frac{h_2^{33}}{2} \end{pmatrix}, \quad h_3 = 0.
$$

Bottom-up approach

Iguro, Omura 2306.0 See also Kingman 220

 V_2 ($\overline{3}$, 2, 5/6) contributes to ($\overline{c}P_Rb$)($\overline{\tau}P_Lv$): this solution revived recently! $\mathcal{L}_{V_2}=h_1^{ij}(\overline{d_i^C}\gamma_{\mu}P_LL_j^b)\varepsilon^{ab}V_2^{\mu,a}+h_2^{ij}(\overline{Q_i^{C,a}}\gamma_{\mu}P_Re_j)\varepsilon^{ab}V_2^{\mu,b}+h_3^{ij}(\overline{Q_i^C}\gamma_{\mu}P_Ru_j)V_2^{\mu*}+h.c.$ Assigning approximate τ number to this doublet the fermion interaction is given as

Iguro, Omura 2306.0 See also Kingman 220

 V_2 (3, 2, 5/6) contributes to ($\bar{c}P_Rb$)($\bar{\tau}P_Lv$): this solution revived recently! $\mathcal{L}_{V_2} = h_1^{ij} (\overline{d_i^C} \gamma_\mu P_L L_i^b) \varepsilon^{ab} \nabla_2^{\mu,a} + h_2^{ij} (\overline{Q_i^{C,a}} \gamma_\mu P_R e_j) \varepsilon^{ab} \nabla_2^{\mu,b} + h_3^{ij} (\overline{Q_i^C} \gamma_\mu P_R u_j) \nabla_2^{\mu*} + h.c.$ Assigning approximate τ number to this doublet the fermion interaction is given as

Iguro, Omura 2306.0 See also Kingman 220

 V_2 ($\overline{3}$, 2, 5/6) contributes to ($\overline{c}P_Rb$)($\overline{\tau}P_Lv$): this solution revived recently! $\mathcal{L}_{V_2} = h_1^{ij} (\overline{d_i^C} \gamma_\mu P_L L_j^b) \varepsilon^{ab} \nabla_2^{\mu,a} + h_2^{ij} (\overline{Q_i^{C,a}} \gamma_\mu P_R e_j) \varepsilon^{ab} \nabla_2^{\mu,b} + h_3^{ij} (\overline{Q_i^C} \gamma_\mu P_R u_j) \nabla_2^{\mu*} + h.c.$ Assigning approximate τ number to this doublet the fermion interaction is given as

Summary

To be honest I thought that there is nothing to do more (Feb. 2022)

- ・Situation has been changed gradually with new experimental data, Lattice input,,,
- ・Discrepancy in RD,RD* remains but scalar contribution would be more interesting
- Key predictions of H⁺ solution to RD, RD^{*} and $C₉$ is found
- Connection to nucleon EDM is clarified within $U(2)$ flavored U_1 LQ model
- ・τν+b provide a powerful collider probe
- \cdot V₂ LQ model now is possible to explain the anomaly and b- $>$ stt is key process Stay tuned for new inputs from LHC, B-factories **Implication of Λ_b → Λ_cτν data and b → cτν sum rule, see Marco's talk**

Backyard start from the next

Apology: sorry for forgetting your papers

New process: LFUV in Upsilon decay

Importance of $B_c^- \to \tau \bar{\nu}$ bound

Vector and scalar operators for $R(D^{(*)})$ automatically

Limitation of the bound: charm mass uncertainty, LEP data of N(B,Bc-> $\tau \overline{v}$) $_{21}$

H⁻ interpretation of R_D R_D* anomalies silently revived

constraint for m_{H-} > 400GeV Iguro 2018

τν resonance search result for $m_H < 400$ GeV is not available at \sqrt{s} =13TeV probably because

- \cdot they originally search for W' in SSM and wanted to push up the lower bound on $m_{W'}$
- ・SMBG (W-> τν tail) is huge at low mT

How is the situation and prospect for $m_{H_{\text{H}}}< 400$ **GeV ?**

Improving LHC search in τν mode again, additional b-tagging A. Soni et al 1704.06659, Iguro-To

Implication of Λ_b → Λ_cτν data and b → cτν sum rule

Syuhei Iguro, M. Fedele, U. Niesrte, T.Kitahara, R. Watanabe, M. Blanke, A. Crivellin 2211.14172

Currently we have discrepancy in b→cτν

Experimental mistake? Statistical Fluctuation? Underestimation of uncertainties? Wrong SM prediction? New physics?

 $R_{D^{(*)}} =$ $BR(B\to D^{(*)}\tau\nu$ $BR(B \to D^{(*)} l \nu$ $R_{J/\psi} =$ $BR(B_c \to J/\psi \tau \nu$ $BR(B_c \rightarrow J/\psi \mu \nu$, $R_{\Lambda_c} =$ $BR(\Lambda_b \to \Lambda_c \tau \nu)$ **B** R(Λ _b → Λ _cμν They all are described by $b \rightarrow c\tau v$ transition. Compared to the SM predictions, curretnt experimental results are Larger +4σ
Larger +2σ

Smaller-2σ Based on the updated sum rule which connects different ratios,

we investigated whether the currents data can be explained within a generic Model.

Sum rule	
$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} = 0.280 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.720 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)} + \delta_{\Lambda_c}$	$\delta_{\Lambda_c} = \text{Re}\left[(1 + C_{V_L}^{\tau}) \left(0.314 C_T^{\tau *} - 0.003 C_{S_R}^{\tau *} \right) \right]$
$+ 0.014 \left(C_{S_L}^{\tau} ^2 + C_{S_R}^{\tau} ^2 \right)$	$+ 0.004 \text{ Re}\left(C_{S_L}^{\tau} C_{S_R}^{\tau *} \right) - 1.30 C_T^{\tau} ^2.$

How to derive this?

Detail: sum rule Based on the our FF we updated the sum rule proposed in 1905.08253 (KIT group).

$$
\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} = |1 + C_{V_L}^{\tau}|^2 + 0.50 \,\text{Re}\left[\left(1 + C_{V_L}^{\tau}\right) C_{S_R}^{\tau*}\right] + 0.33 \,\text{Re}\left[\left(1 + C_{V_L}^{\tau}\right) C_{S_L}^{\tau*}\right] + 0.52 \,\text{Re}\left(C_{S_L}^{\tau} C_{S_R}^{\tau*}\right) + 0.32 \,\left(|C_{S_L}^{\tau}|^2 + |C_{S_R}^{\tau}|^2\right) - 3.11 \,\text{Re}\left[\left(1 + C_{V_L}^{\tau}\right) C_T^{\tau*}\right] + 10.4 \,|C_T^{\tau}|^2,
$$

$$
\frac{R_D}{R_D^{\text{SM}}} = |1 + C_{V_L} + C_{V_R}|^2 + 1.01|C_{S_L} + C_{S_R}|^2 + 0.84|C_T|^2
$$

+ 1.49Re[(1 + C_{V_L} + C_{V_R})(C_{S_L}^* + C_{S_R}^*)] + 1.08Re[(1 + C_{V_L} + C_{V_R})C_T^*],

$$
\frac{R_{D^*}}{R_{D^*}^{\text{SM}}} = |1 + C_{V_L}|^2 + |C_{V_R}|^2 + 0.04|C_{S_L} - C_{S_R}|^2 + 16.0|C_T|^2
$$

- 1.83Re[(1 + C_{V_L})C_{V_R}^*] - 0.11Re[(1 + C_{V_L} - C_{V_R})(C_{S_L}^* - C_{S_R}^*)]
- 5.17Re[(1 + C_{V_L})C_T^*] + 6.60Re[C_{V_L}C_T^*].

 $+0.720 \frac{\mathcal{R}(I)}{\mathcal{R}_{\rm SM}}$

Eliminating interference terms 2211.14172
 $\frac{(\Lambda_c)}{(\Lambda_c)} = 0.280 \frac{\mathcal{R}(D)}{\mathcal{R}(\Lambda_c)} + 0.720 \frac{\mathcal{R}(D^*)}{\mathcal{R}(\Lambda_c)^*} + \delta_{\Lambda_c}$, $\delta_{\Lambda_c} = \text{Re} [(1 + C_{V_L}^{\tau}) (0.314 C_T^{\tau*} - 0.003 C_{S_R}^*)]$ + 0.004 Re $\left(C_{S_L}^{\tau} C_{S_R}^{\tau*}\right)$ - 1.30 $|C_T^{\tau}|^2$. $R_{\Lambda c}^{LHCb} = 0.24 \pm 0.08$,

 $R(\Lambda_c) = 0.367 \pm 0.013$
Prediction form RD,RD* $R(\Lambda_c)$ = **U.36** / \pm **U.013** $R_{\Lambda c}^{Light}$ = 0.285 \pm 0.073 **Solid correlation**

Small RD* is more consistent but we need more data to conclude **Even if we include the NP in light lepton mode, we can not explain all.**

2211.14172

 $+$ δ_{Λ_c} ,

Implication of Λ_b → Λ_cτν data and b → cτν sum rule

Syuhei Iguro, M. Fedele, U. Niesrte, T.Kitahara, R. Watanabe, M. Blanke, A. Crivellin 2211.14172

Currently we have discrepancy in b→cτν

Experimental mistake? Statistical Fluctuation? Underestimation of uncertainties? Wrong SM prediction? New physics?

 $R_{D^{(*)}} =$ $BR(B\to D^{(*)}\tau\nu$ $BR(B \to D^{(*)} l \nu$ $R_{J/\psi} =$ $BR(B_c \to J/\psi \tau \nu$ $BR(B_c \rightarrow J/\psi \mu \nu$, $R_{\Lambda_c} =$ $BR(\Lambda_b \to \Lambda_c \tau \nu)$ **B** R(Λ _b → Λ _cμν They all are described by $b \rightarrow c\tau v$ transition. Compared to the SM predictions, curretnt experimental results are Larger +4σ
Larger +2σ

Smaller-2σ Based on the updated sum rule which connects different ratios,

we investigated whether the currents data can be explained within a generic Model.

Sum rule

$$
\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\rm SM}(\Lambda_c)} = 0.280 \frac{\mathcal{R}(D)}{\mathcal{R}_{\rm SM}(D)} + 0.720 \frac{\mathcal{R}(D^*)}{\mathcal{R}_{\rm SM}(D^*)} + \delta_{\Lambda_c} \left[\begin{matrix} \delta_{\Lambda_c} = \text{Re}\left[(1 + C_{V_L}^{\tau}) \left(0.314 C_T^{\tau *} - 0.003 C_{S_R}^{\tau *} \right) \right] \\ + 0.014 \left(|C_{S_L}^{\tau}|^2 + |C_{S_R}^{\tau}|^2 \right) \\ + 0.004 \text{ Re}\left(C_{S_L}^{\tau} C_{S_R}^{\tau *} \right) - 1.30 |C_T^{\tau}|^2. \end{matrix} \right]
$$

New LHCb data prefers smaller (larger) deviation in $R_D(R_{D^*})$. Nevertheless, R_{Λ_c} is still 2 σ off from the sum rule.

Conclusion

Even if we allow the New physics in both τ and light lepton modes,

satisfactory simultaneous explanation of all $R_{D^{(*)}}$, $R_{J/\psi}$, R_{Λ_c} is not possible within QFT.

This result implies that the current data is something wrong and needs reanalysis or more data.

Generic formulae updated!

2210.10751

τ polarization in $\bar B\to D^{(*)}$ τν is crucial to test the NP possibilities!

Although large part of the uncertainty cancels precise non-perturbative input ($B \to D^{(*)}$ **transition form factor) is necessary**

 $\sqrt{p-1}$

$$
R_{D^{(*)}} = \frac{BR(B \rightarrow D^{(*)} \tau \nu)}{BR(B \rightarrow D^{(*)} \nu)} , \quad l = \mu, e
$$

Non-perturbative information extracted from Lattice, experiments, QCDSR,,,,

・New Lattice results for B->D* at non-zero recoil

Dispersive method (DM) can solve all?

Di Carlo, et al, 2105.02497; Martinelli, et al, 2105.07851

Usually form factor parameterization relies on heavy quark expansion and describe the different currents with common functions (Isger-Wise function)

or assume the simple polynomial in terms of conformal valiable z= <<1 e.g. Boyd-Grinstein-Lebed(BGL) method

While DM method, with only lattice data (Fermi-MILC) and unitarity condition gives a parameterization independent form factor

Interestingly this DM method would simultaneously relax the tension

Since DM method yields considerably different result from others, it is natural to ask if this is really compatible with other observables?

31

We found that the DM method at least in B->D* transition conflicts with angular distribution data by more than 3σ => we have discrepancies!

Playing with $FLD^*(e, \mu)$ $F_L^{D^*}(e) =$ $BR(B \to D_L^* \epsilon$ $BR(B \to D^* \epsilon$

1903.03102 Belle K. Adamczyk $1ab^{-1}$

2301.07529 Belle M. Prim $1ab^{-1}$

> Preliminary Belle II 189fb-1

FLD $*(e) = 0.56 \pm 0.02$ unpublished $B^{(0,-)} \rightarrow D^{*(+,0)} e \bar{\nu}_e$ 0.485 ± 0.017 ± 0 $B^{(0,-)} \to D^{*(+,0)} \mu \bar{\nu}$. $0.518 \pm 0.017 \pm 0$ $B \to D^* \ell \bar{\nu}_{\ell}$ $0.501 \pm 0.012 \pm$

ALPS2023 Chaoyi Lyu

Why statistic uncertainty is smaller than Belle?

this Belle II data is based on untagged events and hence statistics is better

Other scenarios: U_1 LQ with U(2) flavor sym

 M_{LQ} [TeV]
We assigned the conservative uncertainty corresponding to the one with to estimate the sensitivity with 139 fb⁻¹ \rightarrow our sensitivity is conservative.

We can touch the interesting region with the LHC. An additional b-tagging is important but not performed yet

Global view: B physics at future lepton colliders

In which field future machine plays a role?

We are waiting for your suggestion (process) to evaluate the potential! 36

Bu,c→τν at FCC-ee **Syuhei Iguro**, Marco Fedele, Xunwu Zuo,,,,

2305.02998

Improving $B_{u,c}$ \rightarrow τν accuracy is super important for V_{ub} , V_{cb} , $R_{D}(*)$ and testing the SM and HQET. At the previous Z pole e**⁺**e**-** collider, the number of the produced b quark is smaller than BaBar, Belle. LHCb has tremendous number of b, however, not suitable for precision physics. FCC-ee is an unique opportunity for τ , ν , involving precision B physics with $O(10^{11})$ b-hadron!

 H^+ **S₁LQ U₁LQ** $1.0₁$ $\frac{10}{\sqrt{20}}$ 3σ 3σ 0.5 0.5 2σ $\mathrm{Im}[C^c_{S_L}(\mu_b)]$ $\mathrm{m}[C^\mathrm{c}_{S_\mathrm{Z}}(\mu_b)]$ Ω ($\mathbb{\tilde{R}}_{2}^{\mathbb{R}}$ 3 -0.5 -0.5 Future sensitivity $R_{\mathbf{D}}(*)$ -1.0 excluded $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{excluded} & \text{excluded} & \text{excluded} \\
\hline\n\text{1.0 -0.8 -0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4} & \text{1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4}\n\hline\n\end{array}$ $-\frac{0}{2}$ -0.2 -0.1 0.0 0.1 0.2 0.3 $\text{Re}[C_{S_{\tau}}^{c}(\mu_b)]$ $\text{Re}[C_{S_{\tau}}^{c}(\mu_b)]$ $C_V^u(\mu_b)$ FCC-ee and HL-LHC can search **W** meshed region '//,

They can determine BR(**Bc→τν**) at O(1)% of the SM prediction

Except for the thin ring, we can probe whole region for **H**⁺ and **S**₁.

FCC-ee can probe the broader parameter space than HL-LHC.

FCC-ee is super powerful tool not only EW precision physics but also heavy flavor physics!

B_{u,c}→τν at FCC-ee syuhei Iguro, Marco Fedele, Xunwu Zuo,,,,

2305.02998

Improving $B_{u,c}$ \rightarrow τν accuracy is super important for V_{ub} , V_{cb} , $R_{D}(*)$ and testing the SM and HQET. At the previous Z pole e**⁺**e**-** collider, the number of the produced b quark is smaller than BaBar, Belle. LHCb has tremendous number of b, however, not suitable for precision physics.

Global fit to $b \rightarrow c \tau v$

Inspire web page

Mainly based on 2210.10751 v3(coming soon)

and many papers with Teppei Kitahara, Yuji Omura, Ryoutaro Watanabe, Hantian Zhang, Monika Blanke, Ulrich Nierste, Fedele Marco, Andreas Crivellin,,,