

Updated predictions for $R(D^{(*)})$ using the residual chiral expansion - BLPRXP Form Factors

Dean Robinson, Florian Bernlochner, <u>Markus Prim</u>, Michele Papucci, Zoltan Ligeti

markus.prim@uni-bonn.de

Experimental Status of $R(D^{(*)})$

The difference with the SM prediction corresponds to 3.3σ (HFLAV '23) R(D) exceeds SM by 2.0σ

 $R(D^*)$ exceeds SM by 2.2σ

- Tree level process: large branching fraction (10%), theoretically relatively clean
- Universal lepton gauge coupling in the SM
- Experimentally only access to bound states $B \to D^{(*)}$, D^{**} , ..., $\Lambda_b \to \Lambda_c^*$, ...
- Precision description of the hadronic matrix element required for precision measurements

One Slide Intro to HQET

- Mass-subtracted field redefinition of quarks $Q_{\pm}^{\nu}(x) = \prod_{\pm} e^{im_Q \nu \cdot x} Q(x)$
- Integrate out the double heavy fields to generate HQET Power expansion in $\sim iv \cdot \frac{D}{2m_0} \sim \frac{\Lambda_{QCD}}{2m_0}$
 - Lagrangian corrections: $\mathcal{L}_{HQET} = \bar{Q}_{+}^{\nu} i \nu \cdot D Q_{+}^{\nu} + \sum_{n=1} \mathcal{L}_{n} / (2m_Q)^{n}$
 - Current corrections: $\mathcal{J}_{HQET} = 1 + \sum_{n=1} \mathcal{J}_n / (2m_Q)^n$
 - Perturbative $\mathcal{O}(\alpha_s)$ radiative corrections are fully calculable
- Obtain EFT of 'light muck' in definite s^P state around a HQ static color source
 - Hadrons embed into HQ supermultiplets, e.g., $s^P = \frac{1}{2}^- \Rightarrow J^P = \frac{1}{2} \times \frac{1}{2}^- = 0^- \oplus 1^-$: The *D* and *D**
 - HQET relates $B \rightarrow D$ and $B \rightarrow D^*$ form factors
- Match QCD matrix element onto HQET matrix elements, each represented by Isgur-Wise functions

BLPRXP Form Factors for $B \to D^{(*)} \ell \bar{\nu}_{\ell}$

Expansion to order $O\left(1/m_{b,c}^{(2)}\right)$, $O(1/(m_b m_c))$

Proliferation of non-perturbative parameters

- At NNLO there are 32 additional IW functions \rightarrow Loss of predictivity
 - Largest NNLO correction: $\sim \frac{\Lambda_{QCD}^2}{4m_c^2}$ is larger than current exp. precision
 - Also, $\frac{\alpha_s}{\pi} \times \frac{\Lambda_{QCD}}{2m_c} \sim 2\%$ and $\frac{\alpha_s}{\pi} \times \frac{\Lambda_{QCD}^2}{4m_c m_h} \sim 0.8\%$ needed in the future

+32

+20

Chiral Structure and Residual Chiral Expansion

- Kinetic terms have accidental $U(1) \times U(1)$ chiral symmetry broken to U(1) by $\not \!\!\!\!/_{\perp}$ terms
- HQET corrections
 - Each Lagrangian correction \mathcal{L}_n generated by $\bar{Q}^v_+ i \not\!\!\!/ D_\perp Q^v_- + \bar{Q}^v_- i \not\!\!\!/ D_\perp Q^v_+$: two $\not\!\!\!/ D_\perp$ insertions
 - Each current correction \mathcal{J}_n generated by one insertion of p_{\perp} insertion

Key Idea: Counting \not{p}_{\perp} insertions provides and additional classification of terms vs $1/m_Q$ power expansion. Deform QCD by including a \not{p}_{\perp} power-counting parameter θ **RCE conjecture**: matrix elements involving (many) p_{\perp} OP insertions are typically small

They also break HQ spin symmetry

```
Truncate at \mathcal{O}(\theta^2)
```

 \Rightarrow Captures all NLO + NNLO with zero OP insertions

BLPRXP Form Factors for $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$

Supplemental power counting in the transverse residual momentum p_{\perp}

 \rightarrow Drastic reduction of the non-perturbative parameters

Parameterization of the IW functions

- Parameterization required to fit the experimental/lattice data
- Leading order IW function expressed wrt. to the conformal map $w \rightarrow z_*$

$$\frac{\xi(w)}{\xi(w_0)} = 1 - \frac{8a^2\rho_*^2 z_*}{\text{Slope at } w_0} + \frac{16(2c_*a^4 - \rho_*^2a^2)z_*^2 + \cdots}{\text{Curvature at } w_0} + \frac{16(2c_*a^4 - \rho_*^2a^2)z_*^2}{\text{Conformal parameter } z_*(w), z_*(w_0) = 0}$$

No CLN-type major-axis approximation

- (Sub-)Subleading IW functions $X(w) = X(1) + X'(1)(w - 1) + \cdots$
- This yields to many free parameters ⇒ overfitting/biases
- How to truncate? ⇒ Nested hypothesis test (NHT)

Nested Hypothesis Test

- The free parameters in our model are
 - entering at zero-recoil: $|V_{cb}|$, m_b^{1S} , δm_{bc} , ρ_1 , λ_2 , ρ_*^2 , c_* , $\hat{\eta}(1)$
 - and beyond: $\hat{\eta}'(1), \hat{\chi}_2(1), \hat{\chi}_2'(1), \hat{\chi}_3'(1), \hat{\varphi}_1'(1), \hat{\beta}_2(1), \hat{\beta}_3'(1)$
- Nested Hypothesis Test to determine optimal set of fit parameters
 - Starting point are the parameters contribution at zero-recoil
 - Subsequently add parameters to the model in all combinations
 - Test alternative fit hypothesis with cut-off $\Delta \chi^2 = \chi^2_N \chi^2_{N+1} < 1$
 - Reject combinations with highly correlated parameters

$B \to D^{(*)} \ell \bar{\nu}_{\ell}$ - Updated Results

With new experimental and lattice QCD inputs

Experimental Inputs

- A) Belle $B \rightarrow D\ell \bar{\nu}_{\ell}$ tagged '15 \rightarrow Only use shape and BR world average
- B) Belle $B \to D^* \ell \bar{\nu}_{\ell}$ untagged '19
- C) Belle $B \to D^* \ell \bar{\nu}_{\ell}$ tagged '23 \rightarrow Updated measurement wrt '17
- Today: Only use measured hadronic recoil spectra

BLPRXP '23 Fit $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ BLPRXP '23 $B \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$

 $|V_{cb}|$ from BLPRXP

non-zero recoil lattice inputs:

- $h_{A_1}(w)$ only has good p-values
- full set $h_X(w)$ results in worse p-values

 $|V_{cb}| = (39.1 \pm 0.5) \times 10^{-3}$ using f_{+/0}(w), h_{A1}(w) $|V_{cb}| = (38.7 \pm 0.6) \times 10^{-3}$

 $|V_{cb}| = (39.6 \pm 0.4) \times 10^{-3} [h_{A_1}(w)]$ $|V_{cb}| = (39.4 \pm 0.4) \times 10^{-3} [h_X(w)]$ with the same NHT hypothesis

 	$ \begin{array}{ll} L^{D;D^*}_{w\geq 1;=1} \mbox{ (Belle 15',19,23)} \ , \ p = 0.212 & f_{+/0}(w) \\ L^{D;D^*}_{w\geq 1;=1} \mbox{ (Belle 15,17,19)} \ , \ p = 0.526 & h_{A_1}(w) \end{array} $	
 	FNAL $L_{w \ge 1; w \ge 1}^{D;D^*}[h_{A1}]$, $p = 0.288$ FNAL $L_{w \ge 1; w \ge 1}^{D;D^*}$, $p = 0.024$	
	JLQCD $L_{w \ge 1; w \ge 1}^{D;D^*}$, $p = 0.092$ JLQCD $L_{w \ge 1; w \ge 1}^{D;D^*}$, $p = 0.031$	
	HPQCD $L_{w \ge 1; w \ge 1}^{D;D^*}$, $p = 0.235$ HPQCD $L_{w \ge 1; w \ge 1}^{D;D^*}$, $p = 0.007$	
 	FNAL+JLQCD+HPQCD $L_{w\geq 1;w\geq 1}^{D;D^*}$, $p = 0.261$ FNAL+JLQCD+HPQCD $L_{w\geq 1;w\geq 1}^{D;D^*}$, $p = 0.002$	
	 Inclusive V_{cb}: q^2 mom. Inclusive V_{cb}: E_l, M_X mom. 	
CKM Unitarity		
38 40 42	2 44 46 48 50 52 $ V_{cb} \times 10^3$	

 $R(D^{(*)})$ Predictions – Lattice Inputs

How big is the impact of the LQCD inputs?

Prediction depends on the lattice input, but is compatible within uncertainties

 $f_{+/0}(w), h_{A_1}(w)$

 $f_{+/0}(w), h_X(w)$

$R(D^{(*)})$ Predictions – Experimental Inputs

Are the experimental results compatible with each other?

Small tension in the $R(D^*)$ prediction using different inputs. \rightarrow PDG scale factor of 2 applied in our final prediction

$R(D^{(*)})$ Predictions – Model Dependence

How strongly does the result depend on the choice of the NHT?

 $R(D^{(*)})$ dependence on selected hypothesis from the NHT is small and compatible within the uncertainty.

$R(D^{(*)})$ Predictions – Impact of Updates

$R(D^{(*)})$ Predictions – vs. Experiment

 $\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell$

An alternative process to test the RC

 $\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell$

- Only 2 subleading IW at $\mathcal{O}\left(\frac{1}{m_c^2}\right)$ for $\Lambda_b \to \Lambda_c \ell \bar{\nu}_\ell \pmod{\left(\frac{1}{m_b m_c}\right)}$ included)
- Fit without RC yields only 1 significant parameter contributing to subleading IW

	LHCb + LQCD	
ζ'	-2.04 ± 0.08	
ζ''	3.16 ± 0.38	
$\hat{b}_1/{ m GeV^2}$	-0.46 ± 0.15	
$\hat{b}_2/{ m GeV^2}$	-0.39 ± 0.39	
$m_b^{1S}/{ m GeV}$	4.72 ± 0.05	
$\delta m_{bc}/{\rm GeV}$	3.40 ± 0.02	
χ^2/ndf	7.20/20	
$R(\Lambda_c)$	0.3237 ± 0.0036	

1812.07593

• After application of the RC: $(\mathcal{O}\left(\frac{1}{m_b m_c}\right) \text{ included})$ only 1 free parameter remaining to describe the subleading IW functions: φ_1

→Ideal process to test if RC yields compatible results

 $\operatorname{RC} R(\Lambda_c) = 0.321 \pm 0.004$

Summary & Conclusion

- Residual Chiral Expansion allows us to fit NNLO HQET in exclusive $b \rightarrow c \ell \bar{\nu}_{\ell}$ decays
 - $1/m^2$ corrections are important to match HQET result to LQCD result
- Updated $R(D^{(*)})$ with new experimental and lattice data for $B \to D^{(*)} \ell \bar{\nu}_{\ell}$
 - Results stable with new lattice / experimental data
 - No significant changes with respect to previous result
- Updated $R(\Lambda_c)$ with the RC

