

CKM metrology with semileptonic *B* decays at LHCb

CKM 2023 @ Santiago de Compostela, Spain September 19th, 2023

Blaise Delaney, on behalf of the LHCb Collaboration

Introduction

Probing the CKM picture using semileptonic decays

- CKM matrix elements are fundamental SM parameters
- **Closure** of the Unitarity Triangle a null test of the SM
- Semileptonic decays of heavy hadrons involve one hadronic current *→ clean* laboratory to perform CKM metrology

The LHCb detector Single-arm forward spectrometer ▶ ~25 kHz *bb*, ~500 kHz Int. J. Mod. Phys. A 30 (2015) 1530022 Large samples of semileptonic decays V All b-hadron species accessible [also in WG 2 talks by M. Calvi & M. Rotondo] ECAL HCAL M4 M5 SPD/PS 5m M3 -250mrad M2 Magnet RICH2 M1 **T**3 T2 T1 RICH1 Vertex oc/ator 5m 15m 20m 10m

The LHCb detector

Int. J. Mod. Phys. A 30 (2015) 1530022

Single-arm forward spectrometer

- ~25 kHz $b\bar{b}$, ~500 kHz
- Large samples of semileptonic decays
- ► All *b*-hadron species accessible

[also in WG 2 talks by M. Calvi & M. Rotondo]

Introduction

$|V_{cb}|$ and $|V_{ub}|/|V_{cb}|$ @ LHCb

Long-standing tension (~ 3σ) between $|V_{\{c,u\}b}|$ inclusive and exclusive determinations.

LHCb:

- $|V_{ub}|/|V_{cb}|$ via Λ_b^0 decays [Nature Physics 11 (2015)]
- B_s^0 system:
 - a) Theoretically advantageous : $m_s \gg m_u, m_d$
 - b) Experimentally appealing:
 - ~10¹⁰ B_s^0 per fb⁻¹ produced
 - Reduced *part-reco* pollution than $B^{0/+}$

Introduction

$|V_{cb}|$ and $|V_{ub}|/|V_{cb}|$ @ LHCb

Long-standing tension (~ 3σ) between $|V_{\{c,u\}b}|$ inclusive and exclusive determinations.

LHCb:

<u>Delaney</u> (MIT) - CKM 2023

Parameterisations to model the FF adopted in exclusive $|V_{cb}|$:

- a) Caprini, Lellouch, Neubert (CLN) [Nucl. Phys. B530 (1998) 153]
- b) Boyd, Grinstein, Lebed (BGL) [Phys. Rev. Lett. 74 (1995) 4603]

Measurement of $|V_{cb}|$ with $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_\mu \text{ decays}$ <u>Phys. Rev. D 101 2020, 072004</u>

Phys. Rev. D 101 2020, 072004

Dataset: Full Run 1 dataset, 1 fb⁻¹@ 7 TeV + 2 fb⁻¹@ 8 TeV

Signal: $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

Normalisation: $B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$

A novel fit method

Phys. Rev. D 101 2020, 072004

Challenge @ **LHCb**: reconstruct B_s^0 peak with *unreconstructed neutrino*

Solution: 2D fit to the *plane* in

Corrected mass

$$m_{\text{corr}} \equiv \sqrt{m^2 (D_s^- \mu^+) + p_\perp (D_s^- \mu^+)} + p_\perp (D_s^- \mu^+)$$

• $p_{\perp}(D_s^-)$

a) Fully reconstructed observable

b) Correlated with hadron recoil, w

Z

True

LHCb Simulation True wFraction relative to maximum 1.5 $B_s^0 \to D_s^- \mu^+ \nu_\mu$ 1.4 0.7 0.6 1.3 0.5 0.4 1.2 0.3 0.2 1.1 0.1 1.5 2.5 0.5 2 $p_{\parallel}(D_s)$ [GeV/c]

Fit results

Phys. Rev. D 101 2020, 072004

Signal fit using the CLN parameterisation:

Extraction of $|V_{cb}|$ Phys. Rev. D 101 2020, 072004

First exclusive $|V_{cb}|$ extraction at a **hadron collider** and first determination using B_s^0 **decays**

14

$$|V_{cb}|_{\text{CLN}} = (41.6 \pm 0.6(\text{stat}) \pm 0.9(\text{syst}) \pm 1.2(\text{ext})) \times 10^{-3}$$

 $|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst))$ $\pm 1.2(ext)) \times 10^{-3}$

- Both extractions are compatible with each other
- Agreement with exclusive via $B^{0/+}$ and inclusive $|V_{cb}|$ determinations.

Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ differential decay rate <u>J. High Energ. Phys. 2020, 144 (2020)</u>

Analysis strategy J. High Energ. Phys. 2020, 144 (2020)

Dataset: 2016 data, 1.7 fb⁻¹@ 13 TeV

Selection:

$$B^0_s \to D^{*-}_s (\to D^-_s \gamma) \, \mu^+ \nu_\mu$$

with $D_s^+ \to [K^- K^+]_{\phi} \pi^-, [K^+ \pi^-]_{K^{*0}} K^-$

- Reconstruct soft γ in a cone around the D_s^+
- Bkg subtraction via fit to $m(D_s^+\gamma)$

Analysis target:

Unfold the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ spectrum in *w* a) accounting for detector resolution on *w* b) corrected for the reconstruction and selection efficiency

Form factor fits

J. High Energ. Phys. 2020, 144 (2020)

The measured $B_s^0 \to D_s^{*-} \mu^+ \nu_{\mu}$ spectrum unfolded accounting for efficiency and experimental resolution

 \rightarrow unfolded normalised differential decay rate fit with CLN and BGL

compatibility of BGL and CLN parameterisations

First observation of the decay $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ and measurement of $|V_{ub}|/|V_{cb}|$ Phys. Rev. Lett. **126**, 081804

Analysis strategy

Phys. Rev. Lett. 126 (2021), 081804

Dataset: 2012 data, 2 fb⁻¹@ 8TeV Signal: $B_s^0 \to K^- \mu^+ \nu_\mu$ Normalisation: $B_s^0 \to D_s^- \mu^+ \nu_\mu$

CKM extraction:

Analysis strategy

Phys. Rev. Lett. 126 (2021), 081804

$$\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \times \underbrace{\frac{\mathrm{FF}_K}{\mathrm{FF}_{D_s}}}_{\text{Theory input}}$$
with $\mathrm{FF}_Y = |V_{xb}|^{-2} \int [\mathrm{d}\Gamma(B_s^0 \to Y\mu^+ \nu_\mu)/\mathrm{d}q^2]\mathrm{d}q^2,$
 $Y \in \{K^-, D_s^-\}; x \in \{u, c\}$

 $|V_{ub}|/|V_{cb}|$ extraction in two regions of q^2 using FF_K calculations from

- a) LCSR @ $q^2 < 7$ GeV²/c⁴ [JHEP 2017, 112 (2017)] b) Lattice QCD @ $q^2 > 7$ GeV²/c⁴ [Phys. Rev. D 100, 034501]

 $\rightarrow \text{Maximise precision of} \\ \text{theoretical inputs}$ Similar signal-fit yields

with full- q^2 FF_D, from lattice QCD [Phys. Rev. D 101, 074513]

Fits to data

Extraction of $|V_{ub}|/|V_{cb}|$

Phys. Rev. Lett. 126 (2021), 081804

Low
$$q^2$$
: $\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = 1.66 \pm 0.08(\text{stat}) \pm 0.07(\text{syst}) \pm 0.05(D_s) \times 10^{-3}$
High q^2 : $\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = 3.25 \pm 0.21(\text{stat})^{+0.16}_{-0.17}(\text{syst}) \pm 0.09(D_s) \times 10^{-3}$

 \rightarrow with FF predictions from LCSR [JHEP 112 (2017)] and LQCD [PRD 100, 034501]:

		LHCb
$B_s^0 \rightarrow K^- \mu^+ \nu_\mu \qquad \bullet \\ q^2 < 7 \text{ GeV}^2/c^4 \qquad \bullet$		LCSR (Khod.& Rus.2017)
$B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ q ² > 7 GeV ² /c ⁴	•••	- LQCD (MILC2019)
$\begin{array}{c} \Lambda_b^0 \rightarrow p \mu^- \overline{\nu}_{\mu} \\ q^2 > 15 \text{ GeV}^2/c^4 \end{array} \qquad \bullet \bullet \bullet \end{array}$		LQCD (Detmold2015)
$ V_{ub} _{excl}/ V_{cb} _{excl}$ (PDG)		
0	0	.1 0.2
		$ \mathbf{V}_{ub} / \mathbf{V}_{cb} $

$$|V_{ub}| / |V_{cb}|_{low} = 0.0607 \pm 0.0015 (stat)$$

 $\pm 0.0013 (syst) \pm 0.0008 (D_s)$
 $\pm 0.0030 (FF)$

 $|V_{ub}| / |V_{cb}|_{\text{high}} = 0.0946 \pm 0.0030 (\text{stat})$ $^{+0.0024}_{-0.0025} (\text{syst}) \pm 0.0013 (D_s)$ $\pm 0.0068 (\text{FF})$

Summary

In the pipeline...

[LHCb Implications Workshop 2022]

- $\bullet \ B_s^0 \to K^- \mu^+ \nu_\mu :$
 - Planned **Run 2 update** executed in nominally **8 bins** in $q^2 \rightarrow aim$ for **sensitivity to the shape** of the differential decay rate
 - Investigating $B^+ \to J/\psi K^+$ data as **normalisation** \to simultaneously fit $|V_{ub}|$ and coeffs of FF parameterisation
 - Profit from updated $B_s^0 \to K^-$ FF calculation with reduced uncertainty at low q^2
- Additional channels reaching advanced state:
 - a) $B_c^+ \to D^{(*)0} \mu^+ \nu_{\mu}$: extract $|V_{ub}|/|V_{cb}|$ by normalising to $B_c^+ \to J/\psi \mu^+ \nu_{\mu}$ with full 9 fb⁻¹ dataset \to profit from LQCD $B_c^+ \to D^{*0}$ FF across full q^2
 - b) $B^+ \rightarrow \rho \mu^+ \nu_{\mu}$: access $|V_{ub}|$ and diff. decay rate
 - c) $\Lambda_b^0 \to \Lambda_c^{(*)+} \mu^- \overline{\nu}_{\mu}$: access $|V_{cb}|$ and diff. decay rate [Phys. Rev. D 99, 055008]

Thank you for your attention blaise.delaney at cern.ch

Appendix

Measurement of $|V_{cb}|$ with $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ decays <u>Phys. Rev. D 101, 072004</u>

Phys. Rev. D 101, 072004

TABLE III. External measurements.	inputs based on	experimental
Parameter	Value	Reference
$\overline{f_s/f_d} \times \mathcal{B}(D_s^- \to$	0.0191 ± 0.0008	[24,50]
$K^-K^+\pi^-) imes \tau$ [ps]		
$\mathcal{B}(D^- o K^- K^+ \pi^-)$	0.00993 ± 0.00024	[39]
$\mathcal{B}(D^{*-} \to D^-X)$	0.323 ± 0.006	[39]
$\mathcal{B}(B^0 \to D^- \mu^+ \nu_\mu)$	0.0231 ± 0.0010	[39]
$\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})$	0.0505 ± 0.0014	[39]
B_s^0 mass [GeV/ c^2]	5.36688 ± 0.00017	[39]
D_s^- mass [GeV/ c^2]	1.96834 ± 0.00007	[39]
D_s^{*-} mass [GeV/ c^2]	2.1122 ± 0.0004	[39]

External inputs

Phys. Rev. D 101, 072004

TABLE IV. External inputs based on theory calculations. The values and their correlations are derived in Appendix A, based on Ref. [23].

Parameter	Value	Reference
$\eta_{ m EW}$	1.0066 ± 0.0050	[26]
$h_{A_1}(1)$	0.902 ± 0.013	[18]
CLN parametriza	tion	
$\mathcal{G}(0)$	1.07 ± 0.04	[23]
$\rho^2(D_s^-)$	1.23 ± 0.05	[23]
BGL parametriza	tion	
$\mathcal{G}(0)$	1.07 ± 0.04	[23]
d_1	-0.012 ± 0.008	[23]
d_2	-0.24 ± 0.05	[23]

Systematic uncertainties

Phys. Rev. D 101, 072004

	Uncertainty															
Source		(CLN para	metrization	1				В	GL para	netrizati	on				
	$ V_{cb} $ [10 ⁻³]	$\rho^2(D_s^-) \\ [10^{-1}]$	$\mathcal{G}(0)$ [10 ⁻²]	$\rho^2(D_s^{*-}) \\ [10^{-1}]$	$R_1(1)$ [10 ⁻¹]	$R_2(1)$ [10 ⁻¹]	$ \frac{ V_{cb} }{[10^{-3}]} $	d_1 [10 ⁻²]	d_2 [10 ⁻¹]	$\mathcal{G}(0)$ [10 ⁻²]	b_1 [10 ⁻¹]	c_1 [10 ⁻³]	a_0 [10 ⁻²]	a_1 [10 ⁻¹]	$\mathcal{R}\\[10^{-1}]$	\mathcal{R}^* [10 ⁻¹]
$f_s/f_d \times \mathcal{B}(D_s^- \to K^+ K^- \pi^-)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.4
$\mathcal{B}(D^- \to K^- K^+ \pi^-)$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.3
$\mathcal{B}(D^{*-} \to D^- X)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.0	0.3	-	0.2
$\mathcal{B}(\mathbf{B}^{-0} \to D^- \mu^+ \nu_\mu)$	0.4	0.0	0.3	0.1	0.2	0.1	0.5	0.1	0.0	0.1	0.1	0.4	0.1	0.7	_	_
$\mathcal{B}(\mathbf{B}^{0} \to D^{*-} \mu^{+} \nu_{\mu})$	0.3	0.0	0.2	0.1	0.1	0.1	0.2	0.0	0.0	0.1	0.1	0.3	0.1	0.4	_	—
$m(B^0_s), m(D^{(*)-})$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	_	—
$\eta_{ m EW}$	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	_	—
$h_{A_1}(1)$	0.3	0.0	0.2	0.1	0.1	0.1	0.3	0.0	0.0	0.1	0.1	0.3	0.1	0.5	—	—
External inputs (ext)	1.2	0.0	0.4	0.1	0.2	0.1	1.2	0.1	0.0	0.1	0.1	0.6	0.1	0.8	0.5	0.5
$D^{(s)} \to K^+ K^- \pi^- \text{ model}$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4
Background	0.4	0.3	2.2	0.5	0.9	0.7	0.1	0.5	0.2	2.3	0.7	2.0	0.5	2.0	0.4	0.6
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.0	0.0
Corrections to simulation	0.0	0.0	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Form-factor parametrization		_	_	_	_	_	—	—	—	—	—	_	—	_	0.0	0.1
Experimental (syst)	0.9	0.3	2.2	0.5	0.9	0.7	0.9	0.5	0.2	2.3	0.7	2.1	0.5	2.0	0.6	0.7
Statistical (stat)	0.6	0.5	3.4	1.7	2.5	1.6	0.8	0.7	0.5	3.4	0.7	2.2	0.9	2.6	0.5	0.5

Fit results

Phys. Rev. D 101, 072004

Parameter	Value	
$ V_{cb} $ [10 ⁻³]	$41.4 \pm 0.6 \text{ (stat)} \pm 1.2 \text{ (ext)}$	
$\mathcal{G}(0) \ ho^2(D_s^-)$	$1.102 \pm 0.034 (\text{stat}) \pm 0.004 (\text{ext})$ $1.27 \pm 0.05 (\text{stat}) \pm 0.00 (\text{ext})$	CLN
$\frac{\rho^2(D_s^{*-})}{P_s(1)}$	$\begin{array}{cccc} 1.23 & \pm 0.17 & (\text{stat}) \pm 0.01 & (\text{ext}) \\ 1.34 & \pm 0.25 & (\text{stat}) \pm 0.02 & (\text{ext}) \end{array}$	
$R_1(1) R_2(1)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Parameter		I	Value		
$ V_{cb} $ [10 ⁻³]	42.3	± 0.8	$(\text{stat}) \pm 1.2$	(ext)	
$\mathcal{G}(0)$	1.097	± 0.034	$(\text{stat}) \pm 0.001$	(ext)	
d_1	-0.017	± 0.007	$(\text{stat}) \pm 0.001$	(ext)	
d_2	-0.26	± 0.05	$(\text{stat}) \pm 0.00$	(ext)	BGL
b_1	-0.06	± 0.07	$(\text{stat}) \pm 0.01$	(ext)	
a_0	0.037	± 0.009	$(\text{stat}) \pm 0.001$	(ext)	
a_1	0.28	± 0.26	$(\text{stat}) \pm 0.08$	(ext)	
c_1	0.0031	± 0.0022	$2(\mathrm{stat})\pm0.0006$	(ext)	

Measurement of the shape of the $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$ differential decay rate <u>J. High Energ. Phys. 2020, 144 (2020)</u>

Signal Fits

J. High Energ. Phys. 2020, 144 (2020)

Binned maximum-likelihood fit to $m_{\text{COTr}}(D_s^{*-}\mu^+)$ in **7 bins of** *reconstructed* w [1] \rightarrow extract *raw* yields

Binning optimised to ensure **comparable signal yield** in each bin

[1] JHEP 02 (2017) 021

Signal Fits

J. High Energ. Phys. 2020, 144 (2020)

Systematic uncertainties

J. High Energ. Phys. 2020, 144 (2020)

Unfolded yields in each bin of w & breakdown of stat. and syst. uncertainties

				w bin			
	1	2	3	4	5	6	7
Fraction of $N_{\operatorname{corr},i}^{\operatorname{unf}}$	0.183	0.144	0.148	0.128	0.117	0.122	0.158
Uncertainties $(\%)$							
Simulation sample size	3.5	3.0	2.8	3.1	3.4	3.0	3.7
Sample sizes for effs and corrections	3.6	3.2	3.0	2.8	2.8	2.7	2.8
SVD unfolding regularisation	0.5	0.5	0.1	0.7	1.2	0.0	0.5
Radiative corrections	0.1	0.2	0.1	0.3	0.4	0.2	0.2
Simulation FF parametrisation	0.3	0.1	0.1	0.1	0.2	0.4	0.2
Kinematic corrections	2.4	1.0	1.1	0.1	0.2	0.1	0.9
Hardware-trigger efficiency	0.3	0.3	0.0	0.2	0.2	0.3	0.1
Software-trigger efficiency	0.0	0.1	0.0	0.0	0.1	0.0	0.0
D_s^- selection efficiency	0.5	0.2	0.3	0.3	0.2	0.1	0.3
Photon background subtraction	0.0	2.3	0.8	2.9	2.0	0.9	0.4
Total systematic uncertainty	5.6	5.1	4.4	5.2	5.0	4.2	4.8
Statistical uncertainty	3.4	2.9	2.7	3.1	3.2	2.9	3.4

Systematic uncertainties

J. High Energ. Phys. 2020, 144 (2020)

Table 4: Summary of the systematic and statistical uncertainties on the parameters ρ^2 , a_1^f and a_2^f from the unfolded CLN and BGL fits. The total systematic uncertainty is obtained by adding the individual components in quadrature.

Source	$\sigma(ho^2)$	$\sigma(a_1^f)$	$\sigma(a_2^f)$
Simulation sample size	0.053	0.036	$+0.00 \\ -0.35$
Sample sizes for efficiencies and corrections	0.020	0.016	$+0.00 \\ -0.15$
SVD unfolding regularisation	0.008	0.004	—
Radiative corrections	0.004	—	—
Simulation FF parametrisation	0.007	0.005	—
Kinematic corrections	0.024	0.012	—
Hardware-trigger efficiency	0.001	0.008	—
Software-trigger efficiency	0.004	0.002	—
D_s^- selection efficiency	—	0.008	—
Photon background subtraction	0.002	0.015	—
External parameters in fit	0.024	0.002	$+0.00 \\ -0.04$
Total systematic uncertainty	0.068	0.046	$+0.00 \\ -0.38$
Statistical uncertainty	0.052	0.034	$+0.00 \\ -0.19$

J. High Energ. Phys. 2020, 144 (2020)

Theory inputs used for the BGL fit [Phys.Lett.B 795 (2019) 386-390] [JHEP 11 (2017) 061]

BGL parameter	Value
a_0^f	0.01221 ± 0.00016
$\begin{array}{c} a_1^{\mathcal{F}_1} \\ a_2^{\mathcal{F}_1} \end{array}$	$\begin{array}{c} 0.0042 \pm 0.0022 \\ -0.069 {}^{+ 0.041}_{- 0.037} \end{array}$
$egin{array}{c} a_0^g \ a_1^g \ a_2^g \end{array}$	$\begin{array}{r} 0.024 \substack{+ 0.021 \\ - 0.009 \\ 0.05 \substack{+ 0.39 \\ - 0.72 \\ 1.0 \substack{+ 0.0 \\ - 2.0 \end{array}} \end{array}$
$\begin{array}{c} a_0^{\mathcal{F}_2} \\ a_1^{\mathcal{F}_2} \end{array}$	0.0595 ± 0.0093 -0.318 ± 0.170

Fit results

<u>J. High Energ. Phys. 2020, 144 (2020)</u>

CLN fit	Stat Syst
Unfolded fit Unfolded fit with massless leptons Folded fit	$\rho^{2} = 1.16 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.17 \pm 0.05 \pm 0.07$ $\rho^{2} = 1.14 \pm 0.04 \pm 0.07$
BGL fit	
Unfolded fit	$a_1^f = -0.005 \pm 0.034 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.19} + 0.00_{-0.38}$
Folded fit	$a_1^f = 0.039 \pm 0.029 \pm 0.046$ $a_2^f = 1.00^{+0.00}_{-0.13} + 0.00_{-0.34}$

First observation of the decay $B_s^0 \rightarrow K^- \mu^+ \nu_\mu$ and measurement of $|V_{ub}|/|V_{cb}|$ Phys. Rev. Lett. **126**, 081804

\mathbf{FF}_K calculations

Phys. Rev. Lett. 126, 081804 [supplementary material]

BF result and systematic uncertainties Phys. Rev. Lett. 126, 081804

 $\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = [4.89 \pm 0.21(\text{stat})^{+0.20}_{-0.21}(\text{syst}) \pm 0.14(D_s)] \times 10^{-3} \text{ full } q^2$

Relative systematic uncertainties on $\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu) / \mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)$

Uncertainty	All q^2	low q^2	high q^2
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle identification	1.0	1.0	1.0
$\sigma(m_{ m corr})$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^2 migration	—	2.0	2.0
Efficiency	1.2	1.6	1.6
Fit template	$^{+2.3}_{-2.9}$	$^{+1.8}_{-2.4}$	$+3.0 \\ -3.4$
Total	$+4.0 \\ -4.3$	$+4.3 \\ -4.5$	$+5.0 \\ -5.3$