Lattice determinations of $B_{(s)} \rightarrow D^*_{(s)} \ell \nu$ form factors

Alejandro Vaquero

Universidad de Zaragoza

September 19th, 2023

UNIÓN EUROPEA Fondo Social Europeo El FSE invierte en tu futuro

Alejandro Vaquero (Universidad de Zaragoza)

 $_{\rm s)} \rightarrow D^*_{(a)} \ell \nu$ from LQCD

< D > < A >

Motivation: New physics in the flavor sector of the SM

$$\left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & \boldsymbol{V_{cb}} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

The CKM matrix

- Matrix must be unitary (preserve the norm)
- Tensions have been there for a long time
- Evolution of the tensions according to PDG

Motivation: Tensions in lepton universality ratios

$$R\left(D^*\right) = \frac{\mathcal{B}\left(B \to D^* \tau \nu_{\tau}\right)}{\mathcal{B}\left(B \to D^* \ell \nu_{\ell}\right)}$$

• Current $\approx 3.3\sigma$ tension with the SM (HFLAV)

< □ > < 同 >

Semileptonic $B_{(s)}$ decays on the lattice: Exclusive $|V_{cb}|$

- $\bullet\,$ The amplitude ${\cal F}$ must be calculated in LQCD
 - Data more precise at \boldsymbol{w} close to 1
- $K_{D^*}(w,m_\ell) \propto (w^2-1)^{1\over 2}$ requires extrapolation of experimental data

Semileptonic $B_{(s)}$ decays on the lattice: Universality ratios

- The universality ratio depends only on the form factors
- It is possible to extract $R(D^*)$ without experimental data!

Semileptonic $B_{(s)}$ decays on the lattice: Heavy quarks

- Heavy quark treatment in Lattice QCD
 - For light quarks $(m_l \lesssim \Lambda_{QCD})$, leading discretization errors $\sim \alpha_s^k (a \Lambda_{QCD})^n$
 - For heavy quarks $(m_Q > \Lambda_{QCD})$, discretization errors grow as $\sim \alpha_s^k (am_Q)^n$
- Need special actions to describe the bottom quark, difficult renormalization
 - Relativistic HQ actions (f.i. FermiLab)
 - Non-Relativistic QCD (NRQCD)
- If the action is improved enough, one can treat the bottom as a light quark
 - Highly improved action AND small lattice spacing
 - Use unphysical values for m_b and extrapolate

The discretization errors needn't disappear as long as we keep them under control

イロト イヨト イヨト イ

Semileptonic $B_{(s)}$ decays on the lattice: HPQCD

Alejandro Vaquero (Universidad de Zaragoza)

 $B_{(n)} \rightarrow D^*_{(n)} \ell \nu$ from LQCD

Semileptonic $B_{(s)}$ decays on the lattice: Combined fits

- Combined fits with priors 0(1)
- Kinematic constraint imposed with priors
- BGL fit 2222

	w Constraint		w/o Constraint	
	p	$R_2(1)$	p	$R_2(1)$
MILC	0.51	1.20(12)	0.43	1.27(13)
JLQCD	0.52	0.98(19)	0.25	0.97(19)
HPQCD	0.77	1.39(16)	0.65	1.39(16)
MILC+JLQCD	0.40	1.118(97)	0.36	1.16(11)
MILC+HPQCD	0.44	1.262(93)	0.37	1.262(93)
JLQCD+HPQCD	0.73	1.18(12)	0.67	1.18(12)
All	0.56	1.193(83)	0.50	1.193(83)

• p-value of Belle untagged + BaBar BGL fit 2232 is ≈ 0.04

• Combined $R(D^*) = 0.2667(57)$

8 / 17

Semileptonic $B_{(s)}$ decays on the lattice: Comparison of HQET form factors

Alejandro Vaquero (Universidad de Zaragoza)

 $B_{(e)} \rightarrow D^*_{(e)} \ell \nu$ from LQCD

September 19th, 2023

Semileptonic $B_{(s)}$ decays on the lattice: Comparison of HQET form factors

Alejandro Vaquero (Universidad de Zaragoza)

 $B_{(e)} \rightarrow D^*_{(e)} \ell \nu$ from LQCD

September 19th, 2023

10 / 17

Semileptonic $B_{(s)}$ decays on the lattice: Combined fits

Alejandro Vaquero (Universidad de Zaragoza)

 $B_{(e)} \rightarrow D^*_{(e)} \ell \nu$ from LQCD

September 19th, 2023

Semileptonic $B_{(s)}$ decays on the lattice: Combined fits

< □ > < 同 >

Semileptonic $B_{(s)}$ decays on the lattice: New Fermilab / MILC analysis

- Using 7 $N_f = 2 + 1 + 1$ MILC ensembles of sea HISQ quarks
- The heavy quarks are treated using the Fermilab action
- Half the ensembles feature a physical pion mass
- Analysis of $B_{(s)} \rightarrow D^*_{(s)} \ell \nu$ channels, and $B \rightarrow \pi/K$

Semileptonic $B_{(s)}$ decays on the lattice: New Fermilab / MILC analysis

• Current status: Analyzing ratio fits to extract form factors

< □ > < 同 >

Semileptonic $B_{(s)}$ decays on the lattice: New Fermilab / MILC analysis

- Using 9 $N_f = 2 + 1 + 1$ MILC ensembles of sea HISQ quarks
- The heavy quarks are treated using the HISQ action at unphysical m_b
- Many ensembles at physical pion masses
- Extremely fine ensembles $a \approx$ 0.042 fm, 0.03 fm
- $\bullet\,$ Combined analysis $\rightarrow\,$ information on heavy quark discretization errors

Summary

- Major progress in LQCD calculations of $B_{(s)} o D^*_{(s)} \ell \nu$ form factors
 - In a three year span we got three new calculations
 - Although the three calculations show some differences, they combine nicely in a joint fit

Use the data

- Current results are not conclusive:
 - $\left|V_{cb}\right|$ agrees with previous determinations and the inclusive-exclusive tension remains unsolved
 - Results in $R(D^*)$ are not precise enough
- The LQCD community is determined to improve these results and find better agreements among different collaborations' results
 - The Fermilab / MILC collaboration is preparing two new calculations of the $B_{(s)}\to D^*_{(s)}\ell\nu$ form factors
 - Emphasis in heavy quark discretization errors
 - Possibility of correlating these analyses with $B\to D_{(s)}\ell\nu$ analyses, for a correlated R(D) vs $R(D^*)$ plot
 - Possibility of correlating these analyses with $B \to \pi/K$ for a V_{ub} vs V_{cb} correlated plot
- Expect interesting results from these channels in the following years

THANK YOU

æ

< □ > < □ > < □ > < □ > < □ >