NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^2$

NLO QCD Corrections to inclusive $B \rightarrow X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_Q^3$

Daniel Moreno Torres

based on

D. Moreno, hep-ph/2207.14245

T. Mannel, D. Moreno and A. A. Pivovarov, hep-ph/2112.03875

Paul Scherrer Institut (PSI)

This project has received funding from the European Union's Horizon 2020 research and

innovation program under the Marie Skłodowska-Curie grant agreement No. 884104

(PSI-FELLOW-III-3i)

September 20, 2023

12th International Workshop on the CKM Unitarity Triangle (CKM 2023)

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_Q^3$ \Box Context

Context

High precision studies of inclusive weak decays of H_Q are important for testing the flavour sector of the SM

- Pattern of lifetimes and branching fractions is a solid test of QCD/EW.
- Allow precise extraction of V_{CKM} .
- Required to understand *B*-anomalies \Rightarrow hints of new physics

They require

- (a) Precise measurements: ongoing BelleII, LHCb experiments
- (b) Precise theoretical calculations: in the context of the HQE means to push for higher orders in Λ_{QCD}/m_b and α_s(m_b).
 [Shifman and Voloshin, SJNP 47 (1988)], [Eichten and Hill, PLB 234 (1990)],
 [Isgur and Wise, PLB 232 (1989)], [Grinstein, NPB 339 (1990)],
 [Blok, Koyrakh, Shifman and Vainshtein, PRD 50, 3572 (1994)]

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_Q^3$ — Context

Context

- 3.3 σ tension in $R(D^{(*)}) = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu}_{\tau})/\mathcal{B}(B \to D^{(*)}e\bar{\nu}_{e}).$
- Inclusive decays provide valuable complementary information. [LEP and recently Belle 18']
- $\Gamma(B \to X_c \tau \bar{\nu}_{\tau}) / \Gamma(B \to X_c e \bar{\nu}_e)$ or moments (ratios) of $d\Gamma/dq^2$.
- 3.3 σ tension between $|V_{cb}|^{\text{in./ex.}}$.
- $|V_{cb}|^{\text{in.}}$ can be precisely extracted from $d\Gamma(B \to X_c e \bar{\nu}_e)/dq^2$.

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ HQE for inclusive semileptonic decays

HQE for inclusive semileptonic decays

The $\Gamma(B \to X_c \tau \bar{\nu}_{\tau})$ obtained from

$$\begin{split} \Gamma(B \to X_c \tau \bar{\nu}_{\tau}) &\sim & \operatorname{Im} \langle B | i \int dx \, T \left\{ \mathcal{L}_{\text{eff}}(x) \mathcal{L}_{\text{eff}}(0) \right\} | B \rangle \\ \mathcal{L}_{\text{eff}}^{b \to c \tau \bar{\nu}_{\tau}} &= & 2 \sqrt{2} G_F V_{cb} (\bar{b}_L \gamma_\mu c_L) (\bar{\nu}_{\tau,L} \gamma^\mu \tau_L) + \text{h.c.} \end{split}$$

Since $m_b \gg \Lambda_{\rm QCD}$ one can set up an expansion in $\Lambda_{\rm QCD}/m_b$ (HQE)

$$\Gamma(B \to X_c \tau \bar{\nu}_\tau) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[C_0 \left(1 - \frac{\mu_\pi^2}{2m_b^2} \right) + C_{\mu G} \left(\frac{\mu_G^2}{2m_b^2} - \frac{\rho_{LS}^3}{2m_b^3} \right) - C_{\rho_D} \frac{\rho_D^3}{2m_b^3} \right]$$

perturbative and non-perturbative contributions are factorized in:

- Wilson coefficients: C_i(ρ = m_c²/m_b², η = m_τ²/m_b²) have a perturbative expansion in α_s(m_b), obtained by matching to QCD.
 C₀ at N²LO [S. Biswas and K. Melnikov, JHEP 02 (2010), 089]
 C_{μG} at LO [S. Balk *et al.*, ZPC 64 (1994)] [L. Koyrakh, PRD 49 (1994)]
 C_{ρD} at LO [T. Mannel, A. V. Rusov and F. Shahriaran, NPB 921 (2017)]
- Forward ME of HQET operators: called hadronic parameters μ_{π}^2 , μ_G^2 , ρ_{LS}^3 and $\rho_D^3 \sim \langle B | \bar{h}_v [D_{\perp} \mu, [D_{\perp}^{\mu}, v \cdot D]] h_v | B \rangle$.

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ HQE for inclusive semileptonic decays

HQE for inclusive semileptonic decays

The Γ can be written as an integral in $d(q^2)$ by using a dispersion relation for the $\tau\bar\nu_\tau$ loop

$$\Pi^{\rho\sigma} \equiv i \int \frac{d^D k}{(2\pi)^D} \frac{-\operatorname{Tr}(\Gamma^{\sigma}i(\not\!\!k + \not\!\!\ell + m_{\tau})\Gamma^{\rho}i\not\!\!k)}{k^2((k+\ell)^2 - m_{\tau}^2)} = \frac{1}{\pi} \int_{m_{\tau}^2}^{\infty} d(q^2) \underbrace{\frac{\operatorname{Im} \Pi^{\rho\sigma}}{q^2 - \ell^2 - i\eta}}_{\text{"massive}}$$

"massive propagator" of mass q NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ HQE for inclusive semileptonic decays

HQE for inclusive semileptonic decays

The HQE of the decay spectra is writen as follows

$$\frac{d\Gamma(B \to X_c \tau \bar{\nu}_\tau)}{dr} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[\mathcal{C}_0 \left(1 - \frac{\mu_\pi^2}{2m_b^2} \right) + \mathcal{C}_{\mu_G} \left(\frac{\mu_G^2}{2m_b^2} - \frac{\rho_{LS}^3}{2m_b^3} \right) - \mathcal{C}_{\rho_D} \frac{\rho_D^3}{2m_b^3} \right]$$

where $r = q^2/m_b^2$. The $C_i(r, \rho, \eta)$ are related to the $C_i(\rho, \eta)$ by

$$C_i(
ho,\eta) \quad = \quad \int_{\eta}^{\left(1-\sqrt{
ho}
ight)^2} dr \, \mathcal{C}_i(r,
ho,\eta) \, .$$

Now we can investigate moments of the distribution

$$M_n(\rho,\eta) = \int_{\eta}^{(1-\sqrt{\rho})^2} dr \, r^n \frac{d\Gamma(r,\rho,\eta)}{dr} \,,$$

and related observables like normalized moments to the width and ratios between different channels

$$\hat{M}_{n} = \frac{M_{n}(B \to X_{q} \ell \bar{\nu}_{\ell})}{M_{0}(B \to X_{q} \ell \bar{\nu}_{\ell})}, \qquad R_{n}^{q\ell/q'\ell'} = \frac{|V_{q'b}|^{2}}{|V_{qb}|^{2}} \frac{M_{n}(B \to X_{q} \ell \bar{\nu}_{\ell})}{M_{n}(B \to X_{q'} \ell' \bar{\nu}_{\ell'})}.$$

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ Differential rate in the lepton invariant mass at $\mathcal{O}(\alpha_s/m_b^3)$

Differential rate in the lepton invariant mass at $\mathcal{O}(\alpha_s/m_h^3)$

At α_s/m_b^3 we only need to determine the coefficient of ρ_D (Darwin term)

• Take the amplitude of quark to quark-gluon scattering with kin. conf.

with $p^2 = m_b^2$ and $k_{\perp}^{\mu} = k^{\mu} - v^{\mu}(v \cdot k)$.

- **Expand** to quadratic order in the small momenta $k_{1\perp}, k_{2\perp}$.
- **Project** to the Darwin operator, i. e pick up $k_{1 \perp}^{(\alpha} k_{2 \perp}^{\beta)}$ structure.

Be careful! We must disantangle contributions to dim. 6 operators $\bar{h}_v(v \cdot D)D_{\perp}^2 h_v$, ..., that contribute to higher orders after using the EOM.

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ Differential rate in the lepton invariant mass at $\mathcal{O}(\alpha_s/m_b^3)$

Differential rate in the lepton invariant mass at $\mathcal{O}(\alpha_s/m_b^3)$

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ Differential rate in the lepton invariant mass at $\mathcal{O}(\alpha_s/m_b^3)$

Differential rate in the lepton invariant mass at $\mathcal{O}(\alpha_s/m_h^3)$

Other important remarks:

- **Renormalization** can be performed at differential level ($\epsilon \rightarrow 0$ finite).
- Cancellation of poles is delicated and provides a solid check:
 - (a) Requires to consider the mixing under renormalization between HQET operators of different dimension, like
 [Bauer and Manohar, PRD 57, 337 (1998)]

$$\mathcal{O}_{\pi}^{B} = \mathcal{O}_{\pi}^{R} + \gamma_{\pi D} \frac{\alpha_{s}}{\pi} \frac{1}{m_{b}} \mathcal{O}_{L}$$

- (b) γ_{iD} obtained from the combined insertion of operators of the HQE and operators of the HQET Lagrangian.
- $C_{\rho_D}(\epsilon = 0)$ finite, but integration over r is IR singular at r_{\max} (ϵ dep. must be restored in the IR singular terms).

$$C^{\rm IR}_{\rho_D} \sim \int_{\eta}^{r_{\rm max}} dr \frac{1}{(r_{\rm max} - r)^{3/2}} \to \int_{\eta}^{r_{\rm max}} dr \frac{1}{(r_{\rm max} - r)^{3/2 + \epsilon}}$$

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_Q^3$ -Numerical analysis

Numerical analysis

 $B \to X_c \tau \bar{\nu}_{\tau}$ $\mathcal{C}_{\mu_G}(r)$ $\mathcal{C}_0(r)$ LO- LO+NLO - NLO/ α_s $\mathcal{C}_{\rho_D}(r)$ Numerical value Parameter $4.7 \, \mathrm{GeV}$ $\mu = m_b$ $\rho = m_c^2 / m_b^2$ 0.077 $r_{\min} = \eta = m_{\tau}^2 / m_b^2$ $\alpha_s(m_b)$ 0.1400.215 $r_{\rm max} = (1 - \sqrt{\rho})^2$ 0.522r

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^2$ -Numerical analysis

Numerical analysis

 $B \to X_u \tau \bar{\nu}_\tau$

 $\alpha_s(m_b)$

0.215

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_Q^3$ Numerical analysis

Numerical analysis

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_Q^3$ Final remarks

Final remarks

$$B \to X_c \tau \bar{\nu}_{\tau}$$

- We have computed the α_s/m_b^2 and α_s/m_b^3 corrections to $\Gamma(B \to X_c \tau \bar{\nu}_{\tau})$ and $d\Gamma(B \to X_c \tau \bar{\nu}_{\tau})/dr$ with full dependence on m_c and m_{τ} analytically. [D. Moreno, PRD **106** (2022), 114008]
- Current knowledge of the HQE for $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and q^2 -distribution: $(\alpha_s^2, \alpha_s/m_b^3)$.
- We propose to analyze the Γ , \hat{M}_n and $R_n^{q\ell/q'\ell'}$.
- May provide valuable complementary information to R(D^(*)) where a more than 3σ deviation from the SM is present.
 [Z. Ligeti and F. J. Tackmann, PRD 90 (2014), 034021]
 [M. Rahimi and K. K. Vos, JHEP 11 (2022), 007]
- The LO $1/m_b^3$ corrections (~ 10%) correction to the leading term.
- The α_s/m_b^2 and α_s/m_b^3 corrections (~1%) correction.

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ Final remarks

Final remarks

$$B \to X_u \tau \bar{\nu}_{\tau}$$

- In the $m_c = 0$ case the α_s/m_b^2 results can be applied to $B \to X_u \tau \bar{\nu}_{\tau}$.
- Precise predictions are interesting because
 [Z. Ligeti, M. Luke and F. J. Tackmann, PRD 105, 073009 (2022)]
 - (i) It is a signal channel to measure in the future. Smaller room for the application of the HQE (Dominant $B \to X_c$ overwhelms 1/2 of the PT spectrum) \Rightarrow shape functions important.
 - (ii) Important for modelling this decay as a background with impact on precise measurements of $R(D^{(*)})$.

NLO QCD Corrections to inclusive $B \to X_c \tau \bar{\nu}_{\tau}$ decay rate and spectrum up to $1/m_O^3$ Final remarks

Final remarks

 $B \rightarrow X_c e \bar{\nu}_e$

- The $m_{\tau} = 0$ case important for $|V_{cb}|$ extraction from $\hat{M}_n(r_{cut})$.
- The α_s/m³_b corrections are (~ 1%), and we expect a small but visible impact on |V_{cb}|.
 [T. Mannel, D. Moreno and A. A. Pivovarov, PRD **105** (2022), 054033]
- Overall, this will allow to increase the precision of |V_{cb}| by using M_n(r_{cut}), where a first analysis have given |V_{cb}| = (41.69 ± 0.63) ⋅ 10⁻³.
 [M. Fael, T. Mannel and K. Keri Vos, JHEP 02 (2019), 177]
 [R. van Tonder *et al.* [Belle], PRD 104 (2021), 112011]
 [F. Bernlochner *et al.*, JHEP 10 (2022), 068]
 [M. Bordone, B. Capdevila and P. Gambino, PLB 822 (2021), 136679]
- High precision in $B \to X_c e \bar{\nu}_e$ makes it an interesting channel to explore NP. (see next talk by M. Fael)