Updates on inclusive charmed and bottomed meson decays from lattice

Ryan Kellermann

In collaboration with Alessandro Barone, Shoji Hashimoto, Andreas Jüttner, Takashi Kaneko

Graduate University for Advanced Studies SOKENDAI

CKM 2023, September 19th, 2023

Motivation

- $\sim 3\sigma$ discrepancy between inclusive and exclusive determination (blue vs. black cross)
- Why lattice? → fully nonperturbative theoretical approach to QCD

[Y. Aoki et al., arXiv:2111.09849]

This Talk:

➢Updates on ongoing projects in the analysis of inclusive decays from the lattice perspective [A. Barone et al., arXiv:2305.14092] Inclusive semileptonic decay rate $D_s \rightarrow X_s \ell \nu_\ell$

$$\frac{d\Gamma}{dq^2 dq_0^2 dE_l} = \frac{G_F^2 |V_{cs}|^2}{8\pi^2} L_{\mu\nu} W^{\mu\nu}$$

 $L_{\mu\nu}$: Leptonic tensor (analytically known) $W^{\mu\nu}$: Hadronic tensor (nonperturbative QCD)

$$W^{\mu\nu} \sim \sum_{X_s} \langle D_s(\boldsymbol{p}) | J^{\dagger}_{\mu}(\boldsymbol{q}) | X_s(\boldsymbol{r}) \rangle \langle X_s(\boldsymbol{r}) | J_{\nu}(\boldsymbol{q}) | D_s(\boldsymbol{p}) \rangle \sim \rho(\omega)$$

Spectral density

Analytical approach:

Operator-product expansion (OPE)

BUT

Full control over systematic errors requires nonperturbative methods

Challenges on the lattice:

- Large number of states
- Requires external states, i.e. ground state
- Extraction of $\rho(\omega)$ from correlator ill-posed problem (inverse problem)

Idea [P. Gambino & S. Hashimoto arXiv:2005.13730]

Introduction

Inclusive Decays - Continuum

Total decay rate [arXiv:2211.16830]

$$\Gamma \sim \int_0^{q_{max}^2} dq^2 \sqrt{q^2} \, \bar{X}(q^2)$$

 $\overline{X}(q^2)$ integral over energy of hadronic final states

$$\bar{X}(\boldsymbol{q}^2) \sim \int_{\omega_0}^{\infty} d\omega K^{(l)}(\omega, \boldsymbol{q}^2) \langle D_s(\boldsymbol{0}) | \tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q}) \delta(\hat{H} - \omega) \tilde{J}_{\nu}(\boldsymbol{q}) | D_s(\boldsymbol{0}) \rangle$$
Kernel function (analytically known)
contains terms of power ω_X^l , with $l = 0, 1, 2$

Inclusive decays – Lattice

Non perturbative calculation of hadronic tensor

$$W^{\mu\nu}(\boldsymbol{q},\omega) \sim \sum_{X_s} \langle D_s | \tilde{J}^{\dagger}_{\mu} | X_s \rangle \langle X_s | \tilde{J}_{\nu} | D_s \rangle$$

4pt correlation functions

Inclusive decays – Reconstruction from Lattice

Lattice Data

$$C(t) \sim \langle D_s | \tilde{J}^{\dagger}_{\mu}(-\boldsymbol{q}) e^{-\hat{H}t} \tilde{J}_{\nu}(\boldsymbol{q}) | D_s \rangle \quad \text{Combined with } \overline{X}(\boldsymbol{q}^2)$$

$$\bar{X}(\boldsymbol{q}^2) = \langle D_s(\boldsymbol{0}) | \tilde{J}^{\dagger}_{\mu}K^{(l)}(\hat{H}, \boldsymbol{q}^2) \tilde{J}_{\nu} | D_s(\boldsymbol{0}) \rangle$$

Approximate Kernel in polynomials of e^{-H}

$$K(\widehat{H}, \boldsymbol{q}^{2}) = k_{0} + k_{1}e^{-\widehat{H}} + \dots + k_{N}e^{-N\widehat{H}}$$

$$\overset{\mathsf{C}(0)}{\overline{X}(\boldsymbol{q}^{2})} \sim k_{0} \langle D_{s} | \widetilde{J}_{\mu}^{\dagger}(-\boldsymbol{q}) \widetilde{J}_{\nu}(\boldsymbol{q}) | D_{s} \rangle + \dots + k_{N} \langle D_{s} | \widetilde{J}_{\mu}^{\dagger}(-\boldsymbol{q})e^{-N\widehat{H}} \widetilde{J}_{\nu}(\boldsymbol{q}) | D_{s} \rangle$$

The Kernel function

Simulations conducted on Fugaku using Grid [P. Boyle et al., https://github.com/Grid] and Hadrons [A. Portelli et al., https://github.com/aportelli/Hadrons] software packages

Lattice setup:

- Lattice size: $48^3 \times 96$
- Lattice Spacing: a = 0.055 fm
- $M_{\pi} \simeq 300 \text{ MeV}$

Simulation:

- 2+1 Möbius domain-wall fermions
- *s*, *c* quarks simulated at near-physical values
- Cover whole kinematical region $\boldsymbol{q} = (0,0,0) \rightarrow (1,1,1)$

First numerical results

The differential rate $\overline{X} \sim \frac{d\Gamma}{dq^2}$ $\overline{X}_{\sigma} = \langle D_s(\mathbf{0}) | \tilde{J}^{\dagger}_{\mu}(-q) K_{\sigma}(\widehat{H}, q^2) \tilde{J}_{\nu}(q) | D_s(\mathbf{0}) \rangle$

Using the smeared kernel we obtain

Current points of interest

Systematic errors - Finite volume

Questions

- Error due to approximation? [arXiv:2211.16830]
- Infinite volume limit?
 - In finite volume spectral density is a sum of delta peaks
 - Translate into limits
 - $\sigma \to 0$ • $V \to \infty$

Proper estimate requires

 $\lim_{\sigma \to 0} \lim_{V \to \infty} \bar{X}_{\sigma}(q^2)$ Necessary data not available

Model for the infinite volume limit

Introduce a model

- Include two-body final states
- Freely vary the upper limit of the energy integral ω_{th}

Verify if the model reproduces the correct dependence on ω_{th}
 Estimate the V → ∞ limit

First application for $\overline{X}_{AA}^{\perp}(\mathbf{0})$

 $\overline{X}_{AA}^{\perp}(\mathbf{0})$ only receives contribution from

 $\langle D_s | A_3 A_3 | D_s \rangle$, with l = 2 in the kernel function

Heaviside

Smearing($\sigma = 0.1$) + lattice data

CKM 2023, Ryan Kellermann, Inclusive Decays

Using the model we estimate the limit $V \to \infty$, followed by $\sigma \to 0$ for $\overline{X}_{AA}^{\perp}(\mathbf{0})$

 $\bar{X}_{AA}^{\perp}(\mathbf{0}) \sim \text{Data}$

0.0389(22) + 0.0001(0) + 0.0028(1) = 0.0418(22)

For the safest choice of $q^2 = 0$:

- Negligible corrections from finite volume effects
- $\sigma \rightarrow 0$ limit gives a ~ 7% correction

BUT:

A worse picture is expected for higher q^2

Further studies required

Studies of different observables

Preliminary setup to study other observables, e.g. *moments*

$$\Gamma \sim \int_{0}^{q_{max}^{2}} dq^{2} \sqrt{q^{2}} \,\overline{X}(q)$$

$$\langle (q^2)^n \rangle \sim \frac{1}{\Gamma} \int_0^{q_{max}} dq^2 \sqrt{q^2} \, \overline{X}_Q^{(n)}(q^2)$$

 $\langle E_l^n \rangle \sim \frac{1}{\Gamma} \int_{0}^{q_{max}^2} dq^2 \sqrt{q^2} \, \bar{X}_L^{(n)}(q^2)$

- $\langle (M_{X_s}^2)^n \rangle \sim \frac{1}{\Gamma} \int_{0}^{q_{max}} dq^2 \sqrt{q^2} \, \bar{X}_H^{(n)}(q^2)$ Comparison to Other theory predictions, e.g. **OPE**[P. Gambino et al., arXiv:2203.11762]
 - Experiments

Summary

Updates on the inclusive semileptonic decays for charmed and bottomed mesons

Systematic erros

- Studies into systematic errors induced due to finite volume corrections for the inclusive semileptonic decay rate for $D_s \to X_s \ell \nu_\ell$
 - $\circ q^2 = 0$: good estimate of infinite volume limit
 - $\,\circ\,$ Small corrections due to finite volume effects and $\sigma \rightarrow 0$ limits

Observables - Moments

- Preliminary setup to study different observables that can be extracted from the inclusive semileptonic decays
 - Compare to continuum based theory predictions, e.g. OPE
 - Obtain more predictions which can be compared to experiments

BACKUP

Inclusive semileptonic decay rate $D_s \rightarrow X_s \ell \nu_\ell$

Lattice: 4Pt function

Problems:

1. Upper limit of the energy integral $\theta(\omega_{th} - \omega)$

➡ Sources of systematic errors

2. In a finite volume we deal with a discrete set of states

1. Upper limit of the energy integral

Polynomial reconstruction

Chebyshev approach

Standard Chebyshev polynomials

 $T_j(\omega): [-1,1] \rightarrow [-1,1]$

Construct an approximation in the range $[\omega_0, \infty]$, with $0 \le \omega_0 < \omega_{min}$ $K(\omega) \simeq \sum_{j} c_j^* T_j^* (e^{-\omega})$

Polynomial reconstruction

Chebyshev approach

Standard Chebyshev polynomials

 $T_j(\omega): [-1,1] \rightarrow [-1,1]$

Construct an approximation in the range $[\omega_0, \infty]$, with $0 \le \omega_0 < \omega_{min}$ $K(\omega) \simeq \sum_{j} c_j^* T_j^* (e^{-\omega})$

Backus-Gilbert approach

Minimize functional Statistical error $F_{\mu\nu,\theta}[g] = A_{\mu\nu}[g] + \theta^2 B_{\mu\nu}[g]$ Systematic error

 $A_{\mu\nu}[g]$: polynomial approximation similar to Chebyshev θ^2 : controls balance between systematic and statistical errors

Polynomial reconstruction

Chebyshev approach

Standard Chebyshev polynomials

 $T_j(\omega):[-1,1]\to [-1,1]$

Construct an approximation in the range $[\omega_0, \infty]$, with $0 \le \omega_0 < \omega_{min}$ $K(\omega) \simeq \sum_j c_j^* T_j^* (e^{-\omega})$

Method employed in this analysis

Backus-Gilbert approach

Minimize functional Statistical error

$$F_{\mu\nu,\theta}[g] = A_{\mu\nu}[g] + \theta^2 B_{\mu\nu}[g]$$
Systematic error

A_{μν}[g]: polynomial approximation similar to Chebyshev
 θ²: controls balance between systematic and statistical errors
 A. Barone et al., arXiv:2305.14092
 M. Hansen, et al, arXiv:1903.06476

Numerical Analysis – Procedure

The idea is to use the information from out model and fit this to our lattice data and then perform the infinite volume extrapolation based on the fitted data

Numerical Analysis – Correlator fit

$\langle D_s | A_4 A_4 | D_s \rangle$

At the same time

Total contribution to $\overline{X}(\boldsymbol{q}^2)$ becomes smaller

Total contribution to error budget?