Heavy Quark Expansion for inclusive Semileptonic Decays

K. Keri Vos

Maastricht University & Nikhef

Exclusive versus Inclusive Theory

• Theory (Weak interaction): Transitions between quarks/partons

Exclusive versus Inclusive Theory

- Theory (Weak interaction): Transitions between quarks/partons
- Observation: Transitions between hadrons

Challenge:

- Dealing with QCD at large distances/small scales
- Parametrize fundamental mismatch in non-perturbative objects
 - Calculable: Lattice or Light-cone sumrules
 - Measurable: from data

- Set up OPE and heavy quark expansion
- Well established for *B* decays, precise framework
- Extract important CKM parameters V_{cb} and V_{ub}
- Extract power corrections from data
- Cross check of exclusive decays

Setting up the OPE

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel, · · ·

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: p_b = m_bv + k, expand in k ∼ iD
- Field-redefinition of the heavy field

Operator Product Expansion (OPE)

- $C_i(\mu)$: short distance, perturbative coeficients
- $\langle B|O_i|B\rangle_{\mu}$: non-perturbative forward matrix elements of local operators
- operators contain chains of covariant derivatives

$$\langle B|\mathcal{O}_i^{(n)}|B
angle = \langle B|ar{b}_v(iD_\mu)\dots(iD_{\mu_n})b_v|B
angle$$

Keri Vos (Maastricht)

Decay rate

 Γ_i are power series in $\mathcal{O}(\alpha_s)$

$$\Gamma = \Gamma_0 + \frac{1}{m_b}\Gamma_1 + \frac{1}{m_b^2}\Gamma_2 + \frac{1}{m_b^3}\Gamma_3 \cdots$$

- $\Gamma_0:$ decay of the free quark (partonic contributions), $\Gamma_1=0$
- Γ_2 : μ_π^2 kinetic term and the μ_G^2 chromomagnetic moment

$$2M_{B}\mu_{\pi}^{2} = -\langle B|\bar{b}_{v}iD_{\mu}iD^{\mu}b_{v}|B\rangle$$

$$2M_{B}\mu_{G}^{2} = \langle B|\bar{b}_{v}(-i\sigma^{\mu\nu})iD_{\mu}iD_{\nu}b_{v}|B\rangle$$

• Γ_3 : ρ_D^3 Darwin term and ρ_{LS}^3 spin-orbit term

$$2M_{B}\rho_{D}^{3} = \frac{1}{2} \left\langle B | \bar{b}_{v} \left[iD_{\mu}, \left[ivD, iD^{\mu} \right] \right] b_{v} | B \right\rangle$$
$$2M_{B}\rho_{LS}^{3} = \frac{1}{2} \left\langle B | \bar{b}_{v} \left\{ iD_{\mu}, \left[ivD, iD_{\nu} \right] \right\} (-i\sigma^{\mu\nu}) b_{v} | B \right\rangle$$

- Γ₄: 9 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109
- Γ₅: 18 parameters Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109

Inclusive $B \rightarrow X_c$ decays

 $\frac{\text{Inclusive } B \to X_c \ell \nu: \text{Heavy Quark Expansion (HQE)}}{m_Q \sim m_q \gg \Lambda_{\rm QCD} \text{ OPE for } b \to c \ell \bar{\nu}}$

- q is treated as a heavy degree of freedom
- two-quarks operators: $\bar{Q}_{\nu}(iD^{\alpha}\cdots iD^{\beta})Q_{\nu}$
- IR sensitivity to mass m_q

$$\left. \Gamma \right|_{1/m_Q^3} = \left[rac{34}{3} + 8 \log
ho + \dots
ight] rac{
ho_D^3}{m_Q^3}, \quad ext{with }
ho = (m_q/m_Q)^2$$

 $\frac{\text{Inclusive } B \to X_c \ell \nu: \text{Heavy Quark Expansion (HQE)}}{m_Q \sim m_q \gg \Lambda_{\rm QCD} \text{ OPE for } b \to c \ell \bar{\nu}}$

- q is treated as a heavy degree of freedom
- two-quarks operators: $\bar{Q}_{\nu}(iD^{lpha}\cdots iD^{eta})Q_{
 u}$
- IR sensitivity to mass m_q

$$\left. \Gamma \right|_{1/m_Q^3} = \left[rac{34}{3} + 8\log
ho + \dots
ight] rac{
ho_D^3}{m_Q^3}, \quad ext{with }
ho = (m_q/m_Q)^2$$

• HQE parameters extracted from lepton energy, hadronic mass and q^2 moments

 $\frac{\text{Inclusive } B \to X_c \ell \nu: \text{Heavy Quark Expansion (HQE)}}{m_Q \sim m_q \gg \Lambda_{\rm QCD} \text{ OPE for } b \to c \ell \bar{\nu}}$

- q is treated as a heavy degree of freedom
- two-quarks operators: $\bar{Q}_{\nu}(iD^{\alpha}\cdots iD^{\beta})Q_{\nu}$
- IR sensitivity to mass m_q

$$\left. \Gamma \right|_{1/m_Q^3} = \left[rac{34}{3} + 8 \log
ho + \dots
ight] rac{
ho_D^3}{m_Q^3}, \quad ext{with }
ho = (m_q/m_Q)^2$$

- HQE parameters extracted from lepton energy, hadronic mass and q^2 moments
- Recent progress: ideas for the lattice Juetner et al. [2305.14092]

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005

Non-perturbative matrix elements obtained from moments of differential rate

Charged lepton energy

Hadronic invariant mass

~

$$\langle E^n \rangle_{\rm cut} = \frac{\int_{E_\ell > E_{\rm cut}} dE_\ell \ E_\ell^n \ \frac{d\Gamma}{dE_\ell}}{\int_{E_\ell > E_{\rm cut}} dE_\ell \ \frac{d\Gamma}{dE_\ell}} \qquad \left\langle (M_X^2)^n \right\rangle_{\rm cut} = \frac{\int_{E_\ell > E_{\rm cut}} dM_X^2 \ (M_X^2)^n \ \frac{d\Gamma}{dM_X^2}}{\int_{E_\ell > E_{\rm cut}} dM_X^2 \ \frac{d\Gamma}{dM_X^2}}$$

Dilepton momentum

$$\left\langle (q^2) \right\rangle_{ ext{cut}} = rac{\int_{q^2 > q_{ ext{cut}}^2} dq^2 \, rac{d\Gamma}{dq^2}}{\int_0 dq^2 \, rac{d\Gamma}{dq^2}}$$

- Moments up to n = 3, 4 and with several energy cuts available
- Experimentally necessary to use some cut on the leptons

Belle Collaboration [2109.01685, 2105.08001]

Centralized moments as function of q_{cut}^2 [Talk by Markus Prim]

Determining V_{cb} and the HQE elements

$$\langle E_{\ell}^{n} \rangle, \langle (M_{X}^{2})^{n} \rangle \quad \langle (q^{2})^{n} \rangle_{\text{cut}}$$

$$\downarrow$$

$$m_{b}, m_{c}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{d}^{3}, r_{E}, r_{G}, s_{E}, s_{B}, s_{qB}, + \cdots$$

$$\downarrow$$

$$\text{Br}(\bar{B} \rightarrow X_{c}\ell\bar{\nu}) \propto \frac{|V_{cb}|^{2}}{\tau_{B}} \left[\Gamma_{\mu_{3}}\mu_{3} + \Gamma_{\mu_{G}}\frac{\mu_{G}^{2}}{m_{b}^{2}} + \Gamma_{\tilde{\rho}_{D}}\frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}} \right.$$

$$+ \Gamma_{r_{E}}\frac{r_{E}^{4}}{m_{b}^{4}} + \Gamma_{r_{G}}\frac{r_{G}^{4}}{m_{b}^{4}} + \Gamma_{s_{B}}\frac{s_{B}^{4}}{m_{b}^{4}} + \Gamma_{s_{E}}\frac{s_{E}^{4}}{m_{b}^{4}} + \Gamma_{s_{qB}}\frac{s_{qB}^{4}}{m_{b}^{4}} \right]$$

$$\downarrow$$

$$V_{cb}$$

State-of-the-art in inclusive $b \rightarrow c$

Jezabek, Kuhn, NPB 314 (1989) 1; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015; Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PLB 741 (2015) 290; Fael, Schonwald, Steinhauser, Phys Rev. D 104 (2021) 016003; Fael, Schonwald, Steinhauser, Phys Rev. Lett. 125 (2020) 052003; Fael, Schonwald, Steinhauser, Phys Rev. D 103 (2021) 014005,

$$\begin{split} \Gamma &\propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_{\pi}^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ &\left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O} \left(\frac{1}{m_b^4} \right) + \cdots \right) \end{split}$$

- Include terms up to $1/m_b^{4st}$ see also Gambino, Healey, Turczyk [2016]
- α_s^3 to total rate and kinetic mass Fael, Schonwald, Steinhauser [2020, 2021]
- $\alpha_s \rho_D^3$ for total rate Mannel, Pivovarov [2020]
- Kinetic mass scheme 1411.6560,1107.3100; hep-ph/0401063

$$\begin{array}{cc} E_{\ell}, M_X \text{ moments:} & q^2 \text{ moments}^*: \\ |V_{cb}|_{\mathrm{incl}}^{\mathrm{BCG}} = (42.00 \pm 0.51) \times 10^{-3} & |V_{cb}|_{\mathrm{incl}}^{q^2} = (41.69 \pm 0.63) \times 10^{-3} \end{array}$$

Gambino, Schwanda, PRD 89 (2014) 014022; Alberti, Gambino et al, PRL 114 (2015) 061802; Bordone, Capdevila, Gambino, Phys.Lett.B 822 (2021) 136679; Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

Keri Vos (Maastricht)

Towards the ultimate precision in inclusive V_{cb}

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi}\right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) \right. \\ \left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi}\right)) + \mathcal{O}\left(\frac{1}{m_b^4}\right) + \cdots \right)$$

Challenges:

- Include higher-order $1/m_b$ and α_s corrections
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - $31~{
 m up}$ to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Standard lepton energy and hadronic mass moments are not RPI quantities
- New q² moments are RPI!

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Standard lepton energy and hadronic mass moments are not RPI quantities
- New q² moments are RPI!

Reparametrization invariant quantities:

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)

$$v_{\mu} \rightarrow v_{\mu} + \delta v_{\mu}$$

$$\delta_{RP} v_{\mu} = \delta v_{\mu}$$
 and $\delta_{RP} i D_{\mu} = -m_b \delta v_{\mu}$

- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177

- Standard lepton energy and hadronic mass moments are not RPI quantities
- New q² moments are RPI!

Reparametrization invariant quantities:

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)

$$v_{\mu} \rightarrow v_{\mu} + \delta v_{\mu}$$

$$\delta_{RP} v_{\mu} = \delta v_{\mu}$$
 and $\delta_{RP} i D_{\mu} = -m_b \delta v_{\mu}$

- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)
- q^2 moments could enable a full extraction up to $1/m_b^4$

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- Agreement with BCG extraction (differs due to branching ratio inputs) Bordone,Capdevila, Gambino [2021]

$$|V_{cb}|_{\rm incl}^{\rm BCG} = (42.00\pm0.51)\times10^{-3}$$

• Higher order terms reduce value by 0.25%.

q^2 moments only analysis

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$|V_{cb}|_{
m incl}^{q^2} = (41.69 \pm 0.63) imes 10^{-3}$$

- Extracted ho_D smaller than previous Bernlochner, Prim, Fael, KKV [in progress]
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

q^2 moments only analysis

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$|V_{cb}|_{
m incl}^{q^2} = (41.69 \pm 0.63) \times 10^{-3}$$

- Extracted ho_D smaller than previous Bernlochner, Prim, Fael, KKV [in progress]
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

- Inputs for $B \to X_u \ell \nu$ Next, B lifetimes and $B \to X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.
- · Additional 0.23 uncertainty due to missing higher orders

q² moments only analysis

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.63) \times 10^{-3}$$

- Extracted ho_D smaller than previous Bernlochner, Prim, Fael, KKV [in progress]
- · Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

- Inputs for $B \to X_u \ell \nu$ Next, B lifetimes and $B \to X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.
- Additional 0.23 uncertainty due to missing higher orders

Even higher corrections?

Mannel, Mulatin, KKV [in progress]

- HQE set up with $m_c/m_b \sim \mathcal{O}(1)$
- IR sensitive terms for $m_c
 ightarrow 0$ Bigi, Mannel, Turczyk, Uraltsev [0911.3322]

 - at dim-6: $1/m_b^3 \ln m_c^2$ at dim-8: $1/m_b^5 m_b^2/m_c^2 \sim 1/m_b^3 1/m_c^2$
- Numerically: $m_c^2 \sim m_b \Lambda_{\rm QCD}$
- New! Calculation and estimate of these effects

Even higher corrections?

Mannel, Mulatin, KKV [in progress]

- HQE set up with $m_c/m_b \sim \mathcal{O}(1)$
- IR sensitive terms for $m_c
 ightarrow 0$ Bigi, Mannel, Turczyk, Uraltsev [0911.3322]

 - at dim-6: $1/m_b^3 \ln m_c^2$ at dim-8: $1/m_b^5 m_b^2/m_c^2 \sim 1/m_b^3 1/m_c^2$
- Numerically: $m_c^2 \sim m_b \Lambda_{\rm QCD}$
- New! Calculation and estimate of these effects

Fael, Rahimi, KKV [2208.04282]

- Simultaneous fit of all measurements
 - \alpha_s^2 corrections required Fael et al. [in progress], corrections are negative Steinhauser, Fael, Schoenwald [2205.03410]

Fael, Rahimi, KKV [2208.04282]

- Simultaneous fit of all measurements
 - \u03c8² corrections required Fael et al. [in progress], corrections are negative Steinhauser, Fael, Schoenwald [2205.03410]
- New Physics effects would also influence the moments of the spectrum
- Requires a simultaneous fit of hadronic parameters and NP [Talk by Matteo Fael]

Fael, Rahimi, KKV [2208.04282]

- Simultaneous fit of all measurements
 - \u03c8² corrections required Fael et al. [in progress], corrections are negative Steinhauser, Fael, Schoenwald [2205.03410]
- New Physics effects would also influence the moments of the spectrum
- Requires a simultaneous fit of hadronic parameters and NP [Talk by Matteo Fael]
- Ratio of inclusive b
 ightarrow u over b
 ightarrow c in OPE Fael, KKV [in progress]

Fael, Rahimi, KKV [2208.04282]

- Simultaneous fit of all measurements
 - \u03c8² corrections required Fael et al. [in progress], corrections are negative Steinhauser, Fael, Schoenwald [2205.03410]
- New Physics effects would also influence the moments of the spectrum
- Requires a simultaneous fit of hadronic parameters and NP [Talk by Matteo Fael]
- Ratio of inclusive b
 ightarrow u over b
 ightarrow c in OPE Fael, KKV [in progress]
- QED! Talk Marzia Bordone@CKM

Lepton universality in semileptonic decays

KKV, Rahimi; JHEP [2207.03432] See talk @CKM by Kowalewski

$$R_{e/\mu}(X)\equiv rac{\Gamma(B o X_c ear{
u}_e)}{\Gamma(B o X_c \muar{
u}_\mu)}$$

- Belle II result: $R_{e/\mu}(X) = 1.033 \pm 0.022$ PRL131 [2023] [2301.08266]
- In agreement with new SM predictions: 1.006 ± 0.001 at 1.2σ

Lepton universality in semileptonic decays

KKV, Rahimi; JHEP [2207.03432] See talk @CKM by Kowalewski

$$R_{e/\mu}(X)\equiv rac{\Gamma(B o X_c ear{
u}_e)}{\Gamma(B o X_c \muar{
u}_\mu)}$$

- Belle II result: $R_{e/\mu}(X) = 1.033 \pm 0.022$ PRL131 [2023] [2301.08266]
- In agreement with new SM predictions: 1.006 ± 0.001 at 1.2σ
- New! Belle II result: $R_{\tau/\ell}(X) = 0.228 \pm 0.016 \pm 0.036$ @EPS
- In agreement with our SM prediction:

$$R_{ au/\ell}(X) = 0.221 \pm 0.004$$

Inclusive $B \rightarrow X_u$ semileptonic decays

Inclusive V_{ub}

Inclusive $B \to X_u \ell \nu$

- Experimental cuts necessary to remove charm background
- Local OPE as in b
 ightarrow c cannot work
- Switch to different set-up using light-cone OPE
- Introduce non-perturbative shape functions (\sim parton DAs in DIS)
- Different frameworks: BLNP, GGOU, DGE, ADFR

Recent update:

Belle [2102.00020]

$$|V_{ub}|_{incl} = (4.10 \pm 0.28) \cdot 10^{-3}$$

Inclusive determinations need to be scrutinized

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- \rightarrow S: Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c

Bosch, Lange, Neubert, Paz [2005] Greub, Neubert, Pecjak [0909.1609]; Beneke, Huber, Li [0810.1230]; Becher, Neubert [2005]

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c
- Shape function is non-perturbative and cannot be computed
 - In progress: new flexible parametrization

Shape function parametrization

Olschewsky, Lange, Mannel, KKV [2306.xxxx]

- All moments of shape functions are linked to HQE parameters
- Allows for a range of different shapes \rightarrow systematic uncertainty

Shape function parametrization

Olschewsky, Lange, Mannel, KKV [2306.xxxx]

- All moments of shape functions are linked to HQE parameters
- Allows for a range of different shapes \rightarrow systematic uncertainty

In progress:

Lange, Mannel, Olschewsky, KKV [in progress]

$$|V_{ub}|_{incl} = Stay Tuned!$$

Progress on inclusive $B \rightarrow X_u$

Belle [2107.13855]

- Measurements of the shape may prove useful!
- Ongoing discussion to improve MonteCarlo framework

Heavy quark expansion for charm?

Why HQE for charm?

- Expansion parameters $lpha_s(m_c)$ and $\Lambda_{
 m QCD}/m_c$ less than unity, but not so small \dots
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb
- Constrain Weak Annihilation (WA) contributions

$$ightarrow B_d
ightarrow s\ell\ell$$
 [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

Why HQE for charm?

- Expansion parameters $lpha_s(m_c)$ and $\Lambda_{
 m QCD}/m_c$ less than unity, but not so small \ldots
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb
- Constrain Weak Annihilation (WA) contributions

$$ightarrow B_d
ightarrow s\ell\ell$$
 [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

• Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{
 m QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb
- Constrain Weak Annihilation (WA) contributions
 - $ightarrow B_d
 ightarrow {\it s}\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$
- Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Challenges:

- Valence and non-valence WA operators at higher orders
- Scale for radiative corrections
- Charm mass definition see e.g. Boushmelev, Mannel, KKV [2301.05607]

HQE for Charm revisited

$m_Q \gg m_q \sim \Lambda_{ m QCD}$ OPE for $c o s \ell ar{ u}$

- q dynamical degree of freedom
- four-quark operators remain in OPE
- no explicit $log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters
- $\log(m_c/m_b)$ in $B o X \ell
 u$ corresponds to $\log(\mu/m_c)$ in $D o X \ell
 u$
- caused by mixing of four-quark operators into two-quark operators:

$$C_i^{2q}(\mu) = C_i^{2q}(m_c) + \log\left(\frac{\mu}{m_c}\right) \sum_j \hat{\gamma}_{ij}^T C_j^{4q}(m_c)$$

HQE for charm revisited

 $\rho=m_s^2/m_c^2$

Fael, Mannel, KKV, hep-ph/1910.05234

$$\frac{\Gamma(D \to X_s \ell \nu)}{\Gamma_0} = \left(1 - 8\rho - 10\rho^2\right)\mu_3 + (-2 - 8\rho)\frac{\mu_G^2}{m_c^2} + 6\frac{\tilde{\rho}_D^3}{m_c^3} \\ + \frac{16}{9}\frac{r_G^4}{m_c^4} + \frac{32}{9}\frac{r_E^4}{m_c^4} - \frac{34}{3}\frac{s_B^4}{m_c^4} + \frac{74}{9}\frac{s_E^4}{m_c^4} + \frac{47}{36}\frac{s_{qB}^4}{m_c^4} + \frac{\tau_0}{m_c^3}$$

- RPI quantities (q^2 moments) depend on reduced set
- Up to $1/m_c^3$ only <u>one</u> extra HQE param
- Data required to test description
- Comparison of extracted HQE parameters with *B* decays

HQE for charm revisited

 $\rho=m_s^2/m_c^2$

Fael, Mannel, KKV, hep-ph/1910.05234

$$\begin{aligned} \frac{\Gamma(D \to X_{\rm s}\ell\nu)}{\Gamma_0} &= \left(1 - 8\rho - 10\rho^2\right)\mu_3 + \left(-2 - 8\rho\right)\frac{\mu_G^2}{m_c^2} + 6\frac{\tilde{\rho}_D^3}{m_c^3} \\ &+ \frac{16}{9}\frac{r_G^4}{m_c^4} + \frac{32}{9}\frac{r_E^4}{m_c^4} - \frac{34}{3}\frac{s_B^4}{m_c^4} + \frac{74}{9}\frac{s_E^4}{m_c^4} + \frac{47}{36}\frac{s_{qB}^4}{m_c^4} + \frac{\tau_0}{m_c^3} \end{aligned}$$

- RPI quantities (q^2 moments) depend on reduced set
- Up to $1/m_c^3$ only <u>one</u> extra HQE param
- Data required to test description
- Comparison of extracted HQE parameters with B decays

Key question: HQE indeed applicable to inclusive charm decays?

Extracting weak annihilation from data

Gambino, Kamenik [1004.0114]

- Extrapolate data to $p_e
 ightarrow 0$ and convert from lab frame to D meson rest frame
- Kinetic mass for charm at $\mu = 0.5~{
 m GeV}$ threshold, HQE parameters as input
- Obtain strong bounds on weak annihilation (WA) contribution
- Max 2% WA contribution to $B
 ightarrow X_u \ell \nu$

Extracting weak annihilation from data

Gambino, Kamenik [1004.0114]

- Extrapolate data to $p_e
 ightarrow 0$ and convert from lab frame to D meson rest frame
- Kinetic mass for charm at $\mu = 0.5~{
 m GeV}$ threshold, HQE parameters as input
- Obtain strong bounds on weak annihilation (WA) contribution
- Max 2% WA contribution to $B
 ightarrow X_u \ell \nu$
- My wish: Extract HQE and WA directly from q^2 moments at BESIII

Outlook - inclusive decays

We are in the High-precision Era in Flavour Physics!

Outlook - inclusive decays

We are in the High-precision Era in Flavour Physics!

• Reached impressive precision

Outlook - inclusive decays

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Still many things to work on!

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Still many things to work on!
- Stay tuned for new data and updated theory predictions

We are in the High-precision Era in Flavour Physics!

- Reached impressive precision
- Still many things to work on!
- Stay tuned for new data and updated theory predictions

Close collaboration between theory and experiment necessary!

Backup

Shape functions

Bigi, Shifman, Uraltsev, Luke, Neubert, Mannel, · · ·

• Leading order shape functions

$$2m_B f(\omega) = \langle B(v) | \bar{b}_v \delta(\omega + i(n \cdot D)) b_v | B(v) \rangle$$

• Charged Lepton Energy Spectrum (at leading order)

$$rac{d\Gamma}{dy}\sim\int d\omega heta(m_b(1-y)-\omega)f(\omega)$$

• Moments of the shapefunction are related to HQE (b
ightarrow c) parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{m_b^3}\delta'''(\omega) + \cdots$$

• Shape function is non-perturbative

Shape function parametrization

Preliminary! Olschewsky, Lange, Mannel, KKV [2306.xxxx]

- α_s^2 corrections give large corrections [see also Pezcjak 2019]
- Required to make precision predictions

Contamination of the $B \rightarrow X_c \ell \nu$ signal

Rahimi, Mannel, KKV [arXiv: 2105.02163]

Avoid background subtraction by calculating the full inclusive width:

 $\mathrm{d}\Gamma(B \to X\ell) = \mathrm{d}\Gamma(B \to X_c \ell \bar{\nu}) + \mathrm{d}\Gamma(B \to X_u \ell \bar{\nu}) + \mathrm{d}\Gamma(B \to X_c (\tau \to \ell \bar{\nu} \nu) \bar{\nu})$

- $\underline{b} \rightarrow u \ell \nu$ contribution: suppressed by V_{ub}/V_{cb}
- $b
 ightarrow c(au
 ightarrow \mu
 u ar{
 u}) ar{
 u}$ contribution: phase space suppressed
- QED effects
- Quark-hadron duality violation?

Goal:

provide theoretical description and compare with Monte-Carlo data used by Belle (II)

Challenge:

estimate how much this description would improve V_{cb} determination

Short-Distances Masses

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- $\overline{\mathrm{MS}}$ for scales μ above heavy quark mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_Q(\mu)^{\rm kin} = m_Q^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_\pi^2}{2m_Q}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_F \frac{\alpha_s(m_c)}{\pi} \mu \qquad [\mu_\pi^2]_{\rm pert} = C_F \frac{\alpha_s(m_c)}{\pi} \mu^2$$

• Higher-order terms in the HQE generate corrections $(lpha_s/\pi)\mu^n/m_Q^n$.

Short-Distances Masses

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- $\overline{\mathrm{MS}}$ for scales μ above heavy quark mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_Q(\mu)^{\rm kin} = m_Q^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_\pi^2}{2m_Q}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_F \frac{\alpha_s(m_c)}{\pi} \mu \qquad [\mu_\pi^2]_{\rm pert} = C_F \frac{\alpha_s(m_c)}{\pi} \mu^2$$

- Higher-order terms in the HQE generate corrections $(\alpha_s/\pi)\mu^n/m_Q^n$.
- $\Lambda_{\rm QCD} < \mu < m_Q$: expansion parameters μ/m_Q
 - Well established for m_B : $\mu/m_B\simeq 0.2$
 - Charm??

$$ightarrow \mu = 1 \text{ GeV}
ightarrow \mu/m_c \simeq 1$$

ightarrow \mu = 0.5 GeV
ightarrow \mu/m_c \simeq 0.4

Kinetic Mass

Putting all power corrections to zero!

•
$$m_c^{
m kin}(1~{
m GeV})=1.16~{
m GeV}~(m_s
ightarrow 0~{
m limit})$$

$$\Gamma(c \to s \ell \nu)^{\rm kin} = \Gamma_0 \left[1 + 7.7 \frac{\alpha_s(m_c)}{\pi} + 69 \left(\frac{\alpha_s(m_c)}{\pi} \right)^2 \right]$$

•
$$m_c^{\rm kin}(0.5 \text{ GeV}) = 1.4 \text{ GeV} (m_s \rightarrow 0 \text{ limit})$$

$$\Gamma(c
ightarrow s \ell
u)^{
m kin} = \Gamma_0 \left[1 + 1.2 rac{lpha_s(m_c)}{\pi} + 17 \left(rac{lpha_s(m_c)}{\pi}
ight)^2
ight]$$

Kinetic Mass

Putting all power corrections to zero!

•
$$m_c^{\rm kin}(1~{
m GeV})=1.16~{
m GeV}~(m_s
ightarrow 0~{
m limit})$$

$$\Gamma(c \to s \ell \nu)^{\rm kin} = \Gamma_0 \left[1 + 7.7 \frac{\alpha_s(m_c)}{\pi} + 69 \left(\frac{\alpha_s(m_c)}{\pi} \right)^2 \right]$$

• $m_c^{\rm kin}(0.5~{
m GeV})=1.4~{
m GeV}~(m_s
ightarrow 0~{
m limit})$

$$\Gamma(c
ightarrow s \ell
u)^{
m kin} = \Gamma_0 \left[1 + 1.2 rac{lpha_s(m_c)}{\pi} + 17 \left(rac{lpha_s(m_c)}{\pi}
ight)^2
ight]$$

 $\mu=$ 0.5 GeV touches upon the non-perturbative regime?

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\it R}(s) = rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Start from vacuum correlator

$$\int d^4 x \, e^{-iqx} \langle 0 | T[j_{\mu}(x)j_{\nu}(0)] | 0 \rangle = (g_{\mu\nu}q^2 - q_{\mu}q_{\nu}) \Pi(q^2)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n\left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$\bar{C}_n = (4m_c^2)^n M_n \quad \text{with} \quad M_n = \int \frac{ds}{s^{n+1}} R(s) \tag{1}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$\bar{C}_n = (4m_c^2)^n M_n \quad \text{with} \quad M_n = \int \frac{ds}{s^{n+1}} R(s) \tag{1}$$

• Replace m_c : $m_c = \frac{1}{2} \left(\frac{\bar{C}_n}{M_n} \right)^{1/(2n)}$

Chetyrkin, Kuehn, Steinhauser [hep-ph/9705254], Penin, Pivovarov [hep-pp/9805344]

Boushmelev, Mannel, KKV [2301.05607]

$$\begin{split} \Gamma(c \to s\ell\nu) &= -\frac{G_F^2 |V_{cs}|^2}{192\pi^3} \left(\frac{1}{2} \left(\frac{\bar{C}_n}{M_n} \right)^{1/2} \right)^5 \left(1 + \frac{\alpha_s(\mu)}{\pi} a_1 + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 a_2 + \cdots \right) \\ &= -\frac{G_F^2 |V_{cs}|^2}{6144\pi^3} \left(\frac{\bar{C}_n^{(0)}}{M_n} \right)^{5/2} \left(1 + \frac{\alpha_s(\mu)}{\pi} \left[a_1 + \frac{5}{2n} \frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} \right] \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left[a_2 + \frac{5}{2n} a_1 \frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} + \frac{5}{2n} \frac{\bar{C}_n^{(2)}}{\bar{C}_n^{(0)}} + \frac{5}{4n} \left(\frac{5}{4n} - 1 \right) \left(\frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} \right)^2 \right] + \cdots \right) \end{split}$$

- Conclusion for B: pert. series improves a bit
- Scale at which α_s^2 vanishes rather low: 0.7 m_b
- In progress: Similar approach for the charm + power corrections

$b ightarrow u \ell u$ contribution: Local OPE

Neubert (1994); Bosch, Paz, Lange, Neubert (2004,2005)

- Can be analyzed in local OPE as $B \to X_c \ell \nu$ by taking $m_c \to 0$ limit
- For V_{ub} determination
 - large charm background requires experimental cuts
 - reduces the inclusivity and local OPE no longer converges
 - spectrum described by non-local OPE
 - convolution of pert. coefficients with shape function

Goal:

provide theoretical description and compare with Monte-Carlo data used by Belle (II)

- NLO + $1/m_b^2 + 1/m_b^3$
- In agreement with partonic calc of DFN De Fazio, Neubert (1999); Gambino, Ossola, Uraltsev (2005)
- First study: no α_s for $1/m_b^2$, no additional uncert. due to missing higher orders
- Inputs HQE parameters from $B \to X_c \ell \nu$ study Gambino, Schwanda [2014]; Gambino, Healey, Turczy [2016]

Rahimi, Mannel, KKV [arXiv: 2105.02163]; De Fazio, Neubert 1999; Bosch, Lange, Neubert, Paz 2005

Compare local OPE with generator level Monte-Carlo data provided by Cao, Bernlochner

Monte Carlo:

- BLNP: specific shape function input parameters shape function parameters b = 3.95 and $\Lambda = 0.72$
- DFN: $\alpha_{\rm s}$ corrections convoluted with the exponential shape function model
 - Inputs from $B o X_c \ell
 u$ and $B o X_s \gamma$ data using KN-scheme $\kappa_{agan, Neubert 1998}$
 - $(\lambda_1^+, \lambda_2^+, \lambda_1^-, \lambda_2^-)$ are obtained by varying $\bar{\Lambda}$ and μ_{π}^2 within 1σ Buchmuller, Flacher, 2006

Hadronic contributions: "hybrid Monte Carlo" Belle Collabroation [arXiv:2102.00020.]

- $\bullet\,$ convolution with hadronization simulation based on Pythia
- plus explicit resonances: $\bar{B} \to \pi \ell \bar{\nu}$ and $\bar{B} \to \rho \ell \bar{\nu}$
Monte Carlo versus HQE

Rahimi, Mannel, KKV [arXiv: 2105.02163]; MC data by Lu Cao and Florian Bernlochner

MC-results are in good agreement with the HQE results

Monte Carlo versus HQE

Rahimi, Mannel, KKV[arXiv: 2105.02163]; MC data by Lu Cao and Florian Bernlochner

Wide spread between MC for higher moments

Monte Carlo versus HQE

Rahimi, Mannel, KKV[arXiv: 2105.02163]; MC data by Lu Cao and Florian Bernlochner

Rahimi, Mannel, KKV[arXiv: 2105.02163];

Remarks:

- DFN: Smearing corresponding to a shape function, mimicking some non-perturbative effects; may not capture all
- BLNP: should reproduce the HQE, with parameters adjusted to local HQE prediction
 - should include higher moments of the shape-function model?
 - include subleading shape functions?
- our HQE: interesting to include α_s to HQE parameters, α_s^2 ?

Rahimi, Mannel, KKV[arXiv: 2105.02163];

Contribution from five-body charm decay to $b
ightarrow c \ell
u$ via

$$B(p_B) \to X_c(p_{X_c})(\tau(q_{[\tau]}) \to \mu(q_{[\mu]})\nu_{\mu}(q_{[\bar{\nu}_{\mu}]})\nu_{\tau}(q_{[\nu_{\tau}]}))\bar{\nu}_{\tau}(q_{[\bar{\nu}_{\tau}]})$$

• Phase space suppressed:

$$\frac{\Gamma_{\rm tot}(b \to c\tau (\to \ell \bar{\nu}_\ell \nu_\tau) \bar{\nu}_\tau)}{\Gamma_{\rm tot}(b \to c \ell \bar{\nu})} \sim 4.0\%$$

- Experimentally effects diminished by cutting on the invariant mass of the B
- Can be calculated exactly in the HQE

$$\frac{\mathrm{d}^{8}\Gamma}{\mathrm{d}q^{2}\,\mathrm{d}q_{\nu\bar{\nu}}^{2}\,\mathrm{d}p_{\chi_{c}}^{2}\,\mathrm{d}p_{\chi_{c}}^{2}\,\mathrm{d}^{2}\Omega\,\mathrm{d}\Omega^{*}\,\mathrm{d}^{2}\Omega^{**}}{2^{17}\pi^{5}m_{\pi}^{8}m_{b}^{3}q^{2}} = -\frac{3G_{F}^{2}|V_{cb}|^{2}\sqrt{\lambda}(q^{2}-m_{\tau}^{2})(m_{\tau}^{2}-q_{\nu\bar{\nu}}^{2})\mathcal{B}(\tau\to\mu\nu\nu)}{2^{17}\pi^{5}m_{\pi}^{8}m_{b}^{3}q^{2}}W_{\mu\nu}L^{\mu\nu}$$

- $L_{\mu\nu}$ five-body leptonic tensor (narrow-width limit for τ)
- $W_{\mu\nu}$ standard hadronic tensor including HQE parameters
- Interesting to search for new physics! Mannel, Rusov, Shahriaran (2017); Mannel, Rahimi, KKV [in progress]

Five-body au contribution

Rahimi, Mannel, KKV[arXiv: 2105.02163];

No MC data available to test with

Theory guidance to include power corrections

Lowest State Saturation Approximation (LSSA)

$$\langle B|O_1O_2|B\rangle = \sum_n \langle B|O_1|n\rangle \langle n|O_2|B\rangle$$

$$ho_D^3 = arepsilon \mu_\pi^2, \qquad
ho_{LS}^3 = -arepsilon \mu_G^2, \qquad arepsilon \sim 0.4 \,\, {\rm GeV}$$

Mannel, Turczyk, Uraltsev JHEP 1011 (2010) 109; Heinonen, Mannel, NPB 889 (2014) 46

- LSSA estimated as priors (60% gaussian uncertainty)
- $\mathcal{O}(1/m_b^4, 1/m_b^5)$ can then be included in fit Healey, Turczyk, Gambino, PLB 763 (2016) 60

$$|V_{cb}|_{incl} = (42.00 \pm 0.64) \times 10^{-3}$$

Theory guidance to include power corrections

Lowest State Saturation Approximation (LSSA)

$$\langle B|O_1O_2|B\rangle = \sum_n \langle B|O_1|n\rangle \langle n|O_2|B\rangle$$

$$ho_D^3 = arepsilon \mu_\pi^2, \qquad
ho_{LS}^3 = -arepsilon \mu_G^2, \qquad arepsilon \sim 0.4 \,\, {
m GeV}$$

Mannel, Turczyk, Uraltsev JHEP 1011 (2010) 109; Heinonen, Mannel, NPB 889 (2014) 46

- LSSA estimated as priors (60% gaussian uncertainty)
- $\mathcal{O}(1/m_b^4,1/m_b^5)$ can then be included in fit Healey, Turczyk, Gambino, PLB 763 (2016) 60

$$|V_{cb}|_{incl} = (42.00 \pm 0.64) \times 10^{-3}$$

Towards the Ultimate Precision in $|V_{cb}|$

- Include $lpha_s$ corrections to for ho_D^3 Mannel, Pivovarov [in progress]; Gambino [in progress]
- Full determination up to $1/m_b^4$ from data possible?

Theory guidance to include power corrections

Lowest State Saturation Approximation (LSSA)

$$\langle B|O_1O_2|B\rangle = \sum_n \langle B|O_1|n\rangle \langle n|O_2|B\rangle$$

$$ho_D^3 = arepsilon \mu_\pi^2, \qquad
ho_{LS}^3 = -arepsilon \mu_G^2, \qquad arepsilon \sim 0.4 \,\, {\rm GeV}$$

Mannel, Turczyk, Uraltsev JHEP 1011 (2010) 109; Heinonen, Mannel, NPB 889 (2014) 46

- LSSA estimated as priors (60% gaussian uncertainty)
- $\mathcal{O}(1/m_b^4, 1/m_b^5)$ can then be included in fit Healey, Turczyk, Gambino, PLB 763 (2016) 60

$$|V_{cb}|_{incl} = (42.00 \pm 0.64) \times 10^{-3}$$

Moments of the spectrum

Gambino, Schwanda Phys. Rev. D 89, 014022 (2014)

$B \rightarrow D^*$ form factors

Fermilab-MILC [2105.14019]

- Tension between the slope of the lattice and experimental data
- Same form factors determine SM predictions for $R_{D^{(*)}}$
- New experimental and lattice data needed!

The V_{cb} puzzle: Inclusive versus Exclusive decays

Exclusive $B \to D^{(*)} \ell \bar{\nu}$

- Form factor required (only for $B \rightarrow D$ available at different kinematic points)
- Different parametrizations for form factors: CLN Caprini, Lellouch, Neubert [1997] and BGL Boyd, Grinstein, Lebed [1995]
 - BGL: model independent based on unitarity and analyticity
 - CLN: Simple parametrization using HQE relations
- Some inconsistencies in the Belle data were pointed out see e.g. van Dyk, Jung, Bordone, Gubernari [2104.02094]

Inclusive $B \to X_c \ell \nu$

• Determined fully data driven including $1/m_b$ power corrections

Recently a lot of attention for the V_{cb} puzzle! Bigi, Schacht, Gambino, Jung, Straub, Bernlochner, Bordone, van Dyk, Gubernari

Stay tuned!

Inclusive $b \rightarrow c$

Mannel, Rahimi, KKV [in progress]

<u>NP in the τ sector</u>

- Affects also inclusive $B o X_c au
 u$ Rusov, Mannel, Shahriaran [2017]
- Lepton and hadronic moments challenging to measure
- Recently moments of the five-body decay $B \to X_c \tau (\to \mu \nu \nu) \nu$ investigated Mannel, Rahimi, KKV [2105.02163]
- Would also be influenced by NP [in progress]
- Specific NP scenarios from global fit Mandal, Murgui, Penuela, Pich [2004.06726]

Preliminary!

Five-body au contribution

Rahimi, Mannel, KKV JHEP 09 (2021) 051 [arXiv: 2105.02163];

Contribution from five-body charm decay to $b
ightarrow c \ell
u$ via

$$B(p_B) \to X_c(p_{X_c})(\tau(q_{[\tau]}) \to \mu(q_{[\mu]})\nu_{\mu}(q_{[\bar{\nu}_{\mu}]})\nu_{\tau}(q_{[\nu_{\tau}]}))\bar{\nu}_{\tau}(q_{[\bar{\nu}_{\tau}]})$$

Phase space suppressed:

$$\frac{\Gamma_{\rm tot}(b \to c\tau(\to \ell \bar{\nu}_\ell \nu_\tau) \bar{\nu}_\tau)}{\Gamma_{\rm tot}(b \to c \ell \bar{\nu})} \sim 4.0\%$$

- Experimentally effects diminished by cutting on the invariant mass of the B
- Can be calculated exactly in the HQE

$$\frac{\mathrm{d}^8 \Gamma}{\mathrm{d}q^2 \,\mathrm{d}q^2_{\nu\bar{\nu}} \,\mathrm{d}p^2_{\lambda_c} \,\mathrm{d}^2 \Omega \,\mathrm{d}\Omega^* \,\mathrm{d}^2 \Omega^{**}} = -\frac{3 G_F^2 |V_{cb}|^2 \sqrt{\lambda} (q^2 - m_\tau^2) (m_\tau^2 - q^2_{\nu\bar{\nu}}) \mathcal{B}(\tau \to \mu\nu\nu)}{2^{17} \pi^5 m_\tau^8 m_b^3 q^2} W_{\mu\nu} L^{\mu\nu}$$

- $L_{\mu\nu}$ five-body leptonic tensor (narrow-width limit for au)
- $W_{\mu\nu}$ standard hadronic tensor including HQE parameters
- Interesting to search for new physics! Mannel, Rusov, Shahriaran (2017); Mannel, Rahimi, KKV [in progress]

Shape functions

Bigi, Shifman, Uraltsev, Luke, Neubert, Mannel, · · ·

• Leading order shape functions

$$2m_B f(\omega) = \langle B(v) | \bar{b}_v \delta(\omega + i(n \cdot D)) b_v | B(v) \rangle$$

• Charged Lepton Energy Spectrum (at leading order)

$$rac{d\Gamma}{dy}\sim\int d\omega heta(m_b(1-y)-\omega)f(\omega)$$

• Moments of the shapefunction are related to HQE (b
ightarrow c) parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{m_b^3}\delta'''(\omega) + \cdots$$

• Shape function is non-perturbative and cannot be computed

Shape functions

Lange, Neubert, Bosch, Paz

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b \Lambda_{\rm QCD}})$
- \rightarrow S: Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions

Shape functions

Lange, Neubert, Bosch, Paz

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

 $d\Gamma = H \otimes J \otimes S$

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- Framework to include radiative corrections (+ NNLL resummation)
- Introduces 3 subleading shape functions
- Other approach: OPE with hard-cutoff μ Gambino, Giordano, Ossola, Uraltsev
 - Use pert. theory above cutoff and parametrize the infrared
 - Different definition of the shape functions
- Shape functions have to be parametrized and obtained from data

q^2 moments only analysis

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$|V_{cb}|_{
m incl}^{q^2} = (41.69 \pm 0.63) imes 10^{-3}$$

• Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

q^2 moments only analysis

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$|V_{cb}|_{
m incl}^{q^2} = (41.69 \pm 0.63) \times 10^{-3}$$

• Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4 \quad r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$$

- Inputs for $B \to X_u \ell \nu$ Next, B lifetimes and $B \to X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.
- Additional 0.23 uncertainty due to missing higher orders

q² moments only analysis

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

$$|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.63) \times 10^{-3}$$

· Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

- Inputs for $B \to X_u \ell \nu$ Next, B lifetimes and $B \to X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.
- Additional 0.23 uncertainty due to missing higher orders

What about theory correlations?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

- Flexible correlations between moments $\rho_{\rm mom}$ and different cuts $\rho_{\rm cut}$
- Included by adding a penalty term to the χ^2
- Scan over large range of values
- V_{cb} constant w.r.t. theory correlations

What about ρ_D^3 ?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

- Large uncertainties on HQE elements
- Important: ρ_D^3 much smaller than previous!
- α_s^2 corrections to moments not yet included

Rahimi, Fael, Vos [2208.04282]

What about ρ_D^3 ?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

- Large uncertainties on HQE elements
- Important: ρ_D^3 much smaller than previous!
- α_s^2 corrections to moments not yet included
- Corrections are negative Steinhauser, Fael, Schoenwald [2205.03410]
- Full analysis including all data is necessary! Bernlochner, Fael, Prim, KKV [in progress]

Rahimi, Fael, Vos [2208.04282]

Even higher corrections?

Mannel, Mulatin, KKV [in progress]

- HQE set up with $m_c/m_b \sim \mathcal{O}(1)$
- IR sensitive terms for $m_c
 ightarrow 0$ Bigi, Mannel, Turczyk, Uraltsev [0911.3322]

 - at dim-6: $1/m_b^3 lnm_c^2$ at dim-8: $1/m_b^5 m_b^2/m_c^2 \sim 1/m_b^3 1/m_c^2$
- Numerically: $m_c^2 \sim m_b \Lambda_{\rm QCD}$
- in progress: Calculation and estimate of these effects

Inclusive B decays

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel, · · ·

Optical Theorem

$$\begin{split} &\Gamma \propto \sum_{X} (2\pi)^{4} \delta^{4} (P_{B} - P_{X}) |\langle X | \mathcal{H}_{eff} | B(v) \rangle|^{2} \\ &= \int d^{4} x \, \langle B(v) | \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) | B(v) \rangle \\ &= 2 \, \operatorname{Im} \int d^{4} x \, e^{-iq \cdot x} \, \langle B(v) | T \left\{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \right\} | B(v) \rangle \end{split}$$

where ${\cal H}_{eff}=J^{\mu}_{c}L_{\mu}$, $J^{\mu}_{c}=ar{b}\gamma^{\mu}P_{L}c$

Inclusive Decays: the OPE

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel, · · ·

Heavy Quark Expansion

- B meson: $p_B = m_B v$
- Split the momentum b quark: $p_b = m_b v + k$, expand in $k \sim iD Q_v$
- Field-redefinition of the heavy field $Q(x) = exp(-im(v \cdot x))Q_v(x)$

$$= 2 \operatorname{Im} \int d^{4}x \, e^{-iq \cdot x} \langle B(v) | T \left\{ \mathcal{H}_{eff}(x) \mathcal{H}_{eff}^{\dagger}(0) \right\} | B(v) \rangle$$
$$= 2 \operatorname{Im} \int d^{4}x \, e^{i(m_{b}v - q) \cdot x} \langle B(v) | T \left\{ \widetilde{\mathcal{H}}_{eff}(x) \widetilde{\mathcal{H}}_{eff}^{\dagger}(0) \right\} | B(v) \rangle$$

where $\widetilde{\mathcal{H}}_{eff} = \tilde{J}_{c}^{\mu}L_{\mu}$, $\tilde{J}_{c}^{\mu} = \bar{b}_{v}\gamma^{\mu}P_{L}c$, $\Gamma \propto 2 \text{Im} T^{\mu\nu}L_{\mu\nu}$

Γ

Inclusive Decays: the OPE

$$\Gamma(B o X_c \ell
u_\ell) \propto 2 \operatorname{Im} T^{\mu
u} L_{\mu
u}$$

$$T^{\mu\nu} = i \int dx^4 e^{i(m_b \nu - q) \cdot x} T\left\{ \bar{b}_{\nu}(x) \gamma^{\mu} P_L c(x), \bar{c}(0) \gamma^{\nu} P_L b_{\nu}(0) \right\}$$

 $Q = m_b v - q$

