Direct CPV in D decays at LHCb

Jolanta Brodzicka [INP Krakow] on behalf of LHCb

CKM2023 Santiago de Compostela

Outline

- Basics of direct CPV
- CP asymmetries in $D^0 \rightarrow K^*K^-$ and $D^0 \rightarrow \pi^*\pi^-$
- Search for CPV in $D_{(s)}^{*} \rightarrow \eta^{(\prime)} \pi^{*}$ decays
- Search for CPV in $D_{(s)}^* \rightarrow K^-K^*K^*$ with Miranda technique
- Examining $D^0 \rightarrow \pi^* \pi^- \pi^0$ and $D^0 \rightarrow K_s K \pi$ with Energy Test
- Summary

Basics of direct CPV

- Occurs in decays
- Results in asymmetries of decay widths (A_{CP}), amplitudes
- Requires two amplitudes with different weak and strong phases
- In charm decays realized through Tree + Penguin
- c→u Penguin is suppressed
 - $\hfill\square$ b-loop is CKM suppressed
 - $\hfill\square$ sd-loops are GIM suppressed, cancel in U-spin limit
- CPV in charm $O(10^{-4} \div 10^{-3})$ within SM; depends on penguin size

Tree and Penguin contributions in $D^0 \longrightarrow K^* K^-$ and $D^0 \longrightarrow \pi^* \pi^-$

Basics of direct CPV (II)

- Impact of phases on sensitivity to CPV
 - $\square \quad \text{P-even asymmetry} \quad A_{CP} \equiv \frac{\Gamma(D \to f) \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} \simeq \left|\frac{\mathcal{P}}{\mathcal{T}}\right| \cos\Delta\phi_{weak} \cos\Delta\phi_{strong}$
 - \Box P-odd asymmetry e.g. triple-product or α -induced asymmetry [in D_(s) \rightarrow 4h, $\Lambda_{c}^{\dagger}\rightarrow\Lambda_{h}^{\dagger}$]

$$A_{CP}^{T-odd}, A_{CP}^{\alpha} \simeq \left| \frac{\mathcal{P}}{\mathcal{T}} \right| \cos \Delta \phi_{weak} \sin \Delta \phi_{strong}$$

- P-even and P-odd asymmetries are complementary
- Direct CPV is decay-dependent; penguin only in SCS decays
- Accessible through time-integrated measurements

LHCb PRL 122, 211803 (2019)

What after the discovery?

- Discovery of CPV in charm $\Delta A_{CP} \equiv A_{CP} (D^0 \to K^+ K^-) - A_{CP} (D^0 \to \pi^+ \pi^-)$
- LHCb Run1+Run2 data ■ D⁰ from D^{*+}→D⁰ π^+ (π -tag) and B decays (μ -tag)

 $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4} \ (5.3\sigma)$

- The upper end of SM predictions. Is it SM or beyond?
- How about individual asymmetries within ΔA_{CP} ?
- Other decays related to $D^0 \rightarrow h^{\dagger}h^{-}$ (via SU(3)_F or models)

From ΔA_{CP} to individual A_{CP} 's

- Measure $A_{CP}(D^0 \rightarrow K^*K^-)$ and disentangle $A_{CP}(D^0 \rightarrow \pi^*\pi^-)$ from ΔA_{CP}
- Run2 data, π -tagged sample: $D^0 \rightarrow K^*K^-$ from $D^{**} \rightarrow D^0 \pi_{tag}^*$
- Measure raw asymmetry of signal yields

$$A_{raw}(D^0 \to K^+ K^-) = \frac{N(D^0) - N(\bar{D}^0)}{N(D^0) + N(\bar{D}^0)}$$

Nuisance asymmetries of O(%) enter measured asymmetry [they cancel out in $\Delta A_{
m P}$]

$$A_{raw} \simeq A_{CP} + A_{prod}(D^{*+}) + A_{det}(\pi_{tag}^{+})$$

- $\Box \quad \text{Production asymmetry:} \ \sigma(pp \to DX) < \sigma(pp \to \bar{D}X)$
- Detection asymmetry: $\epsilon_{rec}(h^+) \neq \epsilon_{rec}(h^-)$ from different interactions with detector and detector asymmetries

Removing nuisance asymmetries

Set of calibration CF decays of $D_{(s)}$ to overconstrain $A_{raw}(D^0 \rightarrow K^*K^-)$ and extract A_{CP}

- Aprod and Adet depend on kinematics of underlying particles. Equalize kinematics of calibration and signal decays
- $A(\overline{K}^0)$ of $O(10^{-4})$, calculated from known interactions of K^0 and \overline{K}^0 with detector, and mixing/CPV in kaon system

■ Two calibration methods to increase statistical sensitivity □ with D^{*} $A_{CP}(K^+K^-) = A_{raw}(D^0 \rightarrow K^+K^-) - A_{raw}(D^0 \rightarrow K^-\pi^+) + A_{raw}(D^+ \rightarrow K^-\pi^+\pi^+) - A_{raw}(D^+ \rightarrow \bar{K}^0\pi^+) + A(\bar{K}^0)$ □ with D^{*} $A_{CP}(K^+K^-) = A_{raw}(D^0 \rightarrow K^+K^-) - A_{raw}(D^0 \rightarrow K^-\pi^+) + A_{raw}(D^+_s \rightarrow \phi\pi^+) - A_{raw}(D^+_s \rightarrow \bar{K}^0K^+) + A(\bar{K}^0)$

Signal and calibration samples for D⁺ method

LHCb PRL 131, 091802 (2023)

Individual direct CP asymmetries

- Combining two calibration methods gives $A_{CP}(D^0 \to K^+ K^-) = (6.8 \pm 5.4 \pm 1.6) \times 10^{-4}$
- A_{CP} is mostly from direct CPV with residual indirect CPV $A_{CP} \simeq a_{CP}^{dir} + \frac{\langle t \rangle}{\tau_D} \Delta Y \quad \Delta Y = -A_{\Gamma}(1 + y_{CP})$
- Direct CP asymmetries extracted from $A_{CP}(D^0 \rightarrow K^*K^-)$ and ΔA_{CP} , and combined with Run1 results

 $\begin{bmatrix} a_{K^+K^-}^{dir} = (7.7 \pm 5.7) \times 10^{-4} & (1.4\sigma) \\ a_{\pi^+\pi^-}^{dir} = (23.2 \pm 6.1) \times 10^{-4} & (3.8\sigma) \end{bmatrix}$ First evidence!

The sum breaks U-spin limit at 2.7 σ

$$a_{K^+K^-}^{dir} + a_{\pi^+\pi^-}^{dir} = (30.8 \pm 11.4) \times 10^{-4}$$

JolantaBrodzicka @ CKM23

 $a^d_{\pi^-\pi^+}$

Search for CPV in D⁺ $\rightarrow \eta^{(\cdot)}\pi^{+}$ and D_s⁺ $\rightarrow \eta^{(\cdot)}\pi^{+}$

- $D^{*} \rightarrow \eta^{(\prime)} \pi^{*}$ are SCS decays (c→d<u>d</u>u, s<u>s</u>u), $D_{s^{*}} \rightarrow \eta^{(\prime)} \pi^{*}$ are CF (c→s<u>d</u>u)
- **Run2 data**, with $\eta^{(\cdot)} \rightarrow \pi^{\dagger} \pi^{-} \gamma$
- $\mathfrak{m}(\eta^{(\prime)})$ constrained in $\mathfrak{m}(\eta^{(\prime)}\pi^{\dagger})$
- $D_{(s)}$ signals from fits to $m(\eta^{(\prime)}\pi)$
- x-check: $m(\eta^{(\prime)}\pi^{\dagger})$ fits in $m(\eta^{(\prime)})$ bins
- Total yields: 0.1M of $D \rightarrow \eta \pi$, 0.6M of $D \rightarrow \eta' \pi$ 0.1M of $D_s \rightarrow \eta \pi$, 1.1M of $D_s \rightarrow \eta' \pi$

Search for CPV in D⁺ $\rightarrow \eta^{(\cdot)}\pi^{+}$ and D_s⁺ $\rightarrow \eta^{(\cdot)}\pi^{+}$

■ Nuisance asymmetries to account for

$$A_{raw}(D_{(s)}^+ \to \eta^{(\prime)}\pi^+) \simeq A_{CP}(D_{(s)}^+ \to \eta^{(\prime)}\pi^+) + A_{prod}(D_{(s)}^+) + A_{det}(\pi^+)$$

• Use $D_{(s)} \rightarrow \phi \pi^*$ calibration channels, with $A_{CP}(D^* \rightarrow \phi \pi^*) = (0.5 \pm 5.1) \times 10^{-4}$ and $A_{CP}(D_s^* \rightarrow \phi \pi^*) = 0$

$$A_{CP}(D^{+} \to \eta^{(')}\pi^{+}) = A_{raw}(D^{+} \to \eta^{(')}\pi^{+}) - A_{raw}(D^{+} \to \phi\pi^{+}) + A_{CP}(D^{+} \to \phi\pi^{+})$$
$$A_{CP}(D^{+}_{s} \to \eta^{(')}\pi^{+}) = A_{raw}(D^{+}_{s} \to \eta^{(')}\pi^{+}) - A_{raw}(D^{+}_{s} \to \phi\pi^{+}) + A_{CP}(D^{+}_{s} \to \phi\pi^{+})$$

Results consistent with CP symmetry

 $A_{CP}(D^+ \to \eta \pi^+) = (3.4 \pm 6.6 \pm 1.6 \pm 0.5) \times 10^{-3}$ $A_{CP}(D^+ \to \eta' \pi^+) = (4.9 \pm 1.8 \pm 0.6 \pm 0.5) \times 10^{-3}$

$$A_{CP}(D_s^+ \to \eta \pi^+) = (3.2 \pm 5.1 \pm 1.2) \times 10^{-3}$$
$$A_{CP}(D_s^+ \to \eta' \pi^+) = (0.1 \pm 1.2 \pm 0.8) \times 10^{-3}$$

CPV in multibody D_(s) decays

- Weak amplitudes as in two-body decays
- Similarities between $D^0 \rightarrow \pi^* \pi^- \pi^0$ and $D \rightarrow \pi \pi$, $D^0 \rightarrow K_s K^- \pi^*$ and $D \rightarrow K K$
- *Complications* arise from strong amplitudes
- But rich dynamics (resonances, rescattering, partial-waves) assure large strong-phase variation across decay phase-space ⇒ increase sensitivity to CPV
- Probe D_(s) decay phase-space to search for local CPV
 - □ **Model-dependent** amplitude analysis: CP asymmetry per amplitude
 - □ **Model-independent** techniques: discovery tools checking consistency with CP symmetry

Search for CPV in $D_{(s)}^{\dagger} \longrightarrow K^{-}K^{+}K^{+}$

- $D^+ \rightarrow K^- K^+ K^+$ is DCS, while $D_{S^+} \rightarrow K^- K^+ K^+$ is SCS
- S-wave dominated decays LHCb JHEP 04, 063 (2019)
- Run2 data, signal significance optimised with BDT
- Dalitz plots folded into higher vs. lower $m^{2}(K^{+}K^{-})$

Shigh [GeV²]

1.8

1.6

1.4

1.2

- ϕ state + broad S-wave
- 21 bins of similar statistics
- For CPV test, bckgd. subtracted with $m(K^{-}K^{+}K^{+})$ fits in Dalitz bins

Miranda Test for $D_{(s)}^{+} \longrightarrow K^{-}K^{+}K^{+}$ decays

• Local-CPV observable in i-th Dalitz bin S_{i}

with
$$\alpha = rac{\sum_i N^i(D^+_{(s)})}{\sum_i N^i(D^-_{(s)})}$$

 S_{CP} is significance of difference between $D_{(s)}^{\dagger}$ and $D_{(s)}^{-}$ signals

With no-CPV, Sⁱ_{CP} follows standard normal distribution
 *x*² test, *x*²=∑(Sⁱ_{CP})²

ndf=nbins-1

■ Give p-value for consistency with no-CPV hypothesis

Both consistent with CP symmetry

PRD 84, 054015 (2011) J. Phys. G44, 085001 (2017)

Energy Test

- Unbinned method for statistical comparison of two distributions, e.g .D and \overline{D} phase space
- Test Statistics based on distance of event pairs (ij)

$$T \equiv \frac{1}{2n(n-1)} \sum_{i,j\neq i}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i,j\neq i}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i,j}^{n,\overline{n}} \psi_{ij}$$

in D sample

Average distance in D sample

- **Distance function** $\psi(d_{ij}) = \exp(-d_{ij}^2/2\delta)$
- Distance in Dalitz space $d_{ij}^2 = (\Delta s_{12})_{ij}^2 + (\Delta s_{13})_{ij}^2 + (\Delta s_{23})_{ij}^2$
- Compare measured To value with T-distribution for CP-symmetrized sample (permutations)
- $p-value= n(T>T_0)/n$ for no-CPV hypotheis

Search for CPV in $D^0 \rightarrow \pi^{\dagger} \pi^{-} \pi^{0}$

2.0

1.0

0.5

0.0

- SCS decays
- p-value~2% in Run1 PLB 740, 158 (2015)
- Run2 data, D⁰ from D^{*+} \rightarrow D⁰ π_{tag^+}
- Resolved and merged $\pi^0 \rightarrow \gamma \gamma$
- BDT selection for resolved sample

 ρ^{\star}, ρ^{0} dominate Dalitz space Efficiency drop for low-p π^0 in merged sample

LHCb arXiv:2306.12746 [JHEP]

Energy Test for $D^0 \rightarrow \pi^{\dagger} \pi^{-} \pi^{0}$

- For combined merged and resolved samples
- Optimisation of δ metric parameter with *realistic* toys CPV induced via phase offset between $D^0 \rightarrow \rho^- \pi^+$ and $\overline{D}^0 \rightarrow \rho^+ \pi^-$

Measurement for data

Method validated with $D^0 \rightarrow K^- \pi^* \pi^0$, toys with detection asymmetries, Δm sidebands JolantaBrodzicka @ CKM23

Search for CPV in $D^0 \rightarrow K_S K^- \pi^+$ and $D^0 \rightarrow K_S K^+ \pi^-$ Preliminary

- SCS decays
- Model-dependent search in Run1
 PRD 93, 052018 (2016)
- Run2 data, D⁰ from D^{*+}→D⁰ π_{tag}^{*}
- K_s $\rightarrow \pi^* \pi^-$ inside or outside VELO

 $m^{2}(K_{S}^{0} \pi^{+}) [GeV^{2}/c^{4}]$

1.8E

1.6

1.4

1.2

0.8

0.6

0.4E

LHCb-PAPER-2023-019

PRELIMINARY

Energy Test for $D^0 \longrightarrow K_s K^- \pi^+$ and $D^0 \longrightarrow K_s K^+ \pi^-$

- Optimal metric parameter $\delta \approx 0.2 \text{ GeV}^2$
- Sensitivity to CPV scenarios with phase offset $\approx 2^{\circ}$ or amplitude difference $\approx 2\%$ between D⁰ and D⁰ in $\overline{D}^{0} \rightarrow K^{*_{\pm}} K^{\mp}$

 $\blacksquare \qquad \text{Method validated with } \mathbb{D}^0 \longrightarrow \mathbb{K}^{-}\pi^{+}\pi^{-}\pi^{+} \text{ and } \mathbb{D}^0 \longrightarrow \mathbb{K}_{S}\pi^{+}\pi^{-} \text{ decays, and } \Delta \text{m sidebands}$ JolantaBrodzicka @ CKM23

Summary

- Large charm samples at LHCb give a unique opportunity for CP violation searches
- Milestone: CPV discovery through ΔA_{CP} in 2019
- First evidence in individual channel, $D^0 \rightarrow \pi^* \pi^-$

 $a_{\pi^+\pi^-}^{dir} = (23.2 \pm 6.1) \times 10^{-4} \quad (3.8\sigma)$

- Recent searches in other two-body channels, $D^0 \rightarrow K^*K^-$ and $D_s^* \rightarrow \eta^{(*)}\pi^*$
- Testing multibody decays for local CPV

 $D_{(s)}^{\dagger} \longrightarrow K^{-}K^{+}K^{+}$, $D^{0} \longrightarrow \pi^{+}\pi^{-}\pi^{0}$ and $D^{0} \longrightarrow K_{s}K^{\pm}\pi^{\mp}$ All consistent with CP symmetry

■ More to come with Run2 data JolantaBrodzicka @ CKM23

Backup slides

LHCb PRL 131, 091802 (2023)

Cross-checks in $A_{CP}(D^0 \longrightarrow K^+K^-)$

■ Acp from two methods, correlations: 0.05 (stat), 0.28 (syst)

 $\begin{aligned} \mathbf{C}_{D^+} : \ \mathcal{A}_{CP}(K^-K^+) &= [13.6 \pm 8.8\,(\mathrm{stat}) \pm 1.6\,(\mathrm{syst})] \times 10^{-4}, \\ \mathbf{C}_{D_s^+} : \ \mathcal{A}_{CP}(K^-K^+) &= [\ 2.8 \pm 6.7\,(\mathrm{stat}) \pm 2.0\,(\mathrm{syst})] \times 10^{-4}, \end{aligned}$

Stability against various conditions

LHCb JHEP 04, 081 (2023)

Search for CPV in $D_{(s)} \rightarrow \eta \pi^{\dagger}$ and $D_{(s)} \rightarrow \eta' \pi^{\dagger}$

Fits to $m(\eta^{(\prime)}\pi^{\star})$ in $m(\eta^{(\prime)})$ bins to check for non- $\eta^{(\prime)}$ background

- **D**(s)⁺ signal contains correctly reconstructed $\eta^{(\cdot)}$ signal
- Small background from random combinations of correct $\eta^{(\cdot)}$

LHCb JHEP 04, 081 (2023)

Search for CPV in $D_{(s)} \rightarrow \eta \pi^{\dagger}$ and $D_{(s)} \rightarrow \eta' \pi^{\dagger}$

$D_s^+ o \eta' \pi^+$	$D^+ o \eta' \pi^+$	$D_s^+ \to \eta \pi^+$	$D^+ \to \eta \pi^+$
0.04	0.04	0.10	0.16
0.01	0.01	0.01	0.02
0.06	0.03	0.06	0.03
0.01	0.02	0.01	0.02
0.03	0.00	0.03	0.00
0.01	0.01	0.02	0.00
0.08	0.06	0.12	0.16
	$\begin{array}{c} D_s^+ \to \eta' \pi^+ \\ 0.04 \\ 0.01 \\ 0.06 \\ 0.01 \\ 0.03 \\ 0.01 \\ 0.08 \end{array}$	$\begin{array}{c cccc} D_s^+ \to \eta' \pi^+ & D^+ \to \eta' \pi^+ \\ \hline 0.04 & 0.04 \\ 0.01 & 0.01 \\ 0.06 & 0.03 \\ 0.01 & 0.02 \\ 0.03 & 0.00 \\ 0.01 & 0.01 \\ \hline 0.08 & 0.06 \\ \end{array}$	$\begin{array}{c ccccc} D_s^+ \to \eta' \pi^+ & D^+ \to \eta' \pi^+ & D_s^+ \to \eta \pi^+ \\ \hline 0.04 & 0.04 & 0.10 \\ 0.01 & 0.01 & 0.01 \\ 0.06 & 0.03 & 0.06 \\ 0.01 & 0.02 & 0.01 \\ 0.03 & 0.00 & 0.03 \\ 0.01 & 0.01 & 0.02 \\ \hline 0.08 & 0.06 & 0.12 \\ \hline \end{array}$

Table 1: Systematic uncertainties associated to values of \mathcal{A}^{raw} (%).

- 1% correlation btw A_P of D_(s) channels due to using shared control mode D_(s) $\rightarrow \phi \pi^{+}$
- Combination with Run1 PLB 771, 21 (2017) and Run2 results for $D_{(s)} \rightarrow \eta \pi^*$ with $\eta \rightarrow e^* e^- \gamma$ JHEP 06, 019 (2021)

$$\begin{split} \mathcal{A}^{CP}(D^+ \to \eta \pi^+) &= (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%, \\ \mathcal{A}^{CP}(D^+_s \to \eta \pi^+) &= (0.32 \pm 0.51 \pm 0.12)\%, \\ \mathcal{A}^{CP}(D^+ \to \eta' \pi^+) &= (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%, \\ \mathcal{A}^{CP}(D^+_s \to \eta' \pi^+) &= (0.01 \pm 0.12 \pm 0.08)\%, \end{split}$$

Search for CPV in $D_{(s)}^{+} \longrightarrow K^{-}K^{+}K^{+}$ decays

Sensitivity to (local) nuisance asymmetries tested with CF decays, with various binning schemes $D_{s^{+}} \rightarrow K^{-}K^{+}\pi^{+}$ $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$

p-value distributions for CF samples split into subsamples of signal-like statistics

Miranda Test for $D_{(s)}^{+} \longrightarrow K^{-}K^{+}K^{+}$ decays

■ Alternative binning schemes [50 bins]

Quark diagrams for $D^0 \rightarrow K_s K^- \pi^+$ and $D^0 \rightarrow K_s K^+ \pi^-$

- D⁰→K_SK⁻π⁺ favoured over D⁰→K_SK⁺π⁻ (BF ratio~0.65) ^[*]
- External W-emission, SCS

 $[^{*}]$ BR(D⁰ \rightarrow K*(892)⁺K⁻) > BR(D⁰ \rightarrow K*(892)⁻K⁺), as respectively K^{*+} and K⁺ couple to W⁺

- Penguin diagram U^{W^+} U^{U} U^{U}
- W-exchange, SCS & colour suppressed the only way to get K^{*0}K⁰ and K⁰K^{*0}; they contribute with opposite signs

LHCb-PAPER-2023-019 PRELIMINARY

Energy Test for $D^0 \longrightarrow K_s K^- \pi^+$ and $D^0 \longrightarrow K_s K^+ \pi^-$

• Method validation with CF-dominated decays, $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ and $D^0 \rightarrow K_{S} \pi^+ \pi^-$

No sensitivity to detection asymmetries of $K\pi$ system or Ks related asymetries