

Earth Mover's Distance as a meassure of CP violation

CKM 2023, Santiago de Compostela, Spain

Based on J. High Energ. Phys. 2023, 98 (2023)

<u>Ahmed Youssef</u> Ph.D. Candidate, University of Cincinnati youssead@ucmail.uc.edu

Sept 19th, 2023

In collaboration with: Adam Davis, Tony Menzo, and Jure Zupan

Current state of the art: Energy Test

Earth Mover' Distance (EMD) as test statistic → B decay

Modified EMD for large samples → D decay

Conclusion and Outlook

How do we quantify direct CP violation in 3 body decay?

How do we quantify direct CP violation in 3 body decay?

Visualize using Dalitz plots!

 m_{ij} - invariant mas of a final state particle

Visualizes the differential decay rate across the phase space of the three-body decay

How do we quantify direct CP violation in 3 body decay?

Visualize using Dalitz plots!

 m_{ij} - invariant mas of a final state particle

Visualizes the differential decay rate across the phase space of the three-body decay

Compare particle and its antiparticle distribution

➡ Hints to CP violation

How do we quantify direct CP violation in 3 body decay?

Earth Mover's Distance as a Meassure of CP Violation

Current State of the art

Current State of the art

What requirements do we need?

Motivation

What requirements do we need?

Is it highly sensitive to CP violation? Can we interpret it?

What requirements do we need?

Is it highly sensitive to CP violation? Can we interpret it?

Earth Mover's Distance (EMD) as test statistic

What requirements do we need?

Is it highly sensitive to CP violation?

Earth Mover's Distance (EMD) as test statistic

Comparable sensitivity to established method! (Comparison with the Energy Test)

Tells us which part of the Dalitz plot the CPV originated from!

Unbinned two-sample test utilizing a test statistic:

Weighting distance function:

$$\psi_{ij} \equiv \psi(d_{ij};\sigma) = e^{-d_{ij}^2/2\sigma^2}$$

$$B^{0}(\overline{B}^{0}) \to f(\overline{f}) \qquad \text{i} - B^{0} \text{ sample} \\ \mathbf{j} - \overline{B}^{0} \text{ sample}$$

Unbinned two-sample test utilizing a test statistic:

Weighting distance function:

$$\psi_{ij} \equiv \psi(d_{ij};\sigma) = e^{-d_{ij}^2/2\sigma^2}$$

$$\begin{array}{c} B^{0}(\overline{B}^{0}) \to f(\overline{f}) \\ j - \overline{B}^{0} \text{ sample} \end{array}$$

Events from two identical distribution

Events from two dissimilar distribution

T close to zero

T is non zero

Optimal Transport (OT)

Example from: Marco Cuturi, MLSS summer school presentaation

Optimal Transport (OT)

Example from: Marco Cuturi, MLSS summer school presentaation

Example from: Marco Cuturi, MLSS summer school presentaation

Example from: Marco Cuturi, MLSS summer school presentaation

Goal of OT: Find the most "natural" way to move points

Example from: Marco Cuturi, MLSS summer school presentaation

 23

Goal of OT: Find the most "natural" way to move points

Example from: Marco Cuturi, MLSS summer school presentaation

Earth Mover's Distance as a Meassure of CP Violation

Optimal Transport (OT)

What is the most optimal way to move one sample to another?

Goal of OT: Find the most "natural" way to move points

Example from: Marco Cuturi, MLSS summer school presentaation

 25

Goal of OT: Find the most "natural" way to move points

Example from: Marco Cuturi, MLSS summer school presentaation

Goal of OT: Find the most "natural" way to move points

Example from: Marco Cuturi, MLSS summer school presentaation

Wasserstein Distance

Wasserstein distance (WD)

$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^N \sum_{j=1}^{\bar{N}} f_{ij} (\hat{d}_{ij})^q \right]^{1/\epsilon}$$

Wasserstein Distance

Wasserstein Distance

Application to 3 Body decay

University of CINCINNATI

Application to 3 Body decay

Sample Size = $\sim 10^3$

$$B^0 \to K^+ \pi^- \pi^0$$

$$\overline{B}{}^0 \to K^- \pi^+ \pi^0$$

EMD as a test statistic

Sample Size =
$$\sim 10^5 - 10^6$$

$$egin{aligned} D^0 & o \pi^+\pi^-\pi^0 \ ar D^0 & o \pi^-\pi^+\pi^0 \end{aligned}$$

"Modified" EMD as a test statistic

University of

Application to 3 Body decay

Sample Size =
$$\sim 10^3$$

 $B^0 \rightarrow K^+ \pi^- \pi^0$
 $\overline{B}^0 \rightarrow K^- \pi^+ \pi^0$
EMD as a test
statistic

Sample Size =
$$\sim 10^5 - 10^6$$

$$D^0 o \pi^+ \pi^- \pi^0 \ \overline{D}{}^0 o \pi^- \pi^+ \pi^0$$

"Modified" EMD as a test statistic

University of

Obtain the null hypotheses pdf from your test statistic by calculating it n times

Obtain the null hypotheses pdf from your test statistic by calculating it n times

Permutation Method

- Permuting the original B^0 and \overline{B}^0 samples
- Calculate the test statistic for each permutation

Master Method

- ➤ Generate an ensemble of B⁰ and B⁰ decay event samples, using the B⁰ decay model for both
- Calculate the test statistic for each sample pair

Obtain the null hypotheses pdf from your test statistic by calculating it n times

Permutation Method

- Permuting the original B^0 and \overline{B}^0 samples
- Calculate the test statistic for each permutation

Master Method

- ▶ Generate an ensemble of B⁰ and B
 ⁰ decay event samples, using the B⁰ decay model for both
- Calculate the test statistic for each sample pair

Compare the sensitivity of W_q and Energy test using the master method

Results for B decay

$$\epsilon \equiv \frac{1}{N_e} \sum_{i=1}^{N_e} \begin{cases} +1 & p_i(W_q) < p_i(T), \\ 0 & \text{otherwise,} \end{cases}$$

Results for B decay

 10^{-1}

EMD traces the variation of the CP asymmetry across the Dalitz plot!

EMD traces the variation of the CP asymmetry across the Dalitz plot!

CP asymmetry: $B^{0}(\overline{B}^{0}) \rightarrow K^{+}\pi^{-}\pi^{0} (K^{-}\pi^{-}\pi^{0})$ $\mathcal{A}_{CP}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$ BaBar amplitude model BaBar Collaboration, Phys. Rev. D 83 (2011) 112010

University of

EMD traces the variation of the CP asymmetry across the Dalitz plot!

CP asymmetry: $B^{0}(\overline{B}^{0}) \rightarrow K^{+}\pi^{-}\pi^{0} (K^{-}\pi^{-}\pi^{0})$ $\mathcal{A}_{CP}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$ BaBar amplitude model BaBar Collaboration, Phys. Rev. D 83 (2011) 112010

$$W_q^q = \sum_i \delta W_q(i)$$

EMD asymmetry:

$$\mathcal{W}_{CP}^{q}(s_{12}, s_{13}) = \frac{\sum_{\bar{i}} \delta \bar{W}_{q}(\bar{i}) - \sum_{i} \delta W_{q}(i)}{\sum_{\bar{i}} \delta \bar{W}_{q}(\bar{i}) + \sum_{i} \delta W_{q}(i)}$$

University o

EMD traces the variation of the CP asymmetry across the Dalitz plot!

University of

EMD traces the variation of the CP asymmetry across the Dalitz plot!

University of

What about larger Data sets?

What about larger Data sets?

$$egin{aligned} D^0 & o \pi^+\pi^-\pi^0 \ ar D^0 & o \pi^-\pi^+\pi^0 \end{aligned}$$

- Very small non-zero CP violation
- ➡ Studied at the LHCb using the ET

What about larger Data sets?

$$egin{aligned} D^0 & o \pi^+\pi^-\pi^0 \ ar D^0 & o \pi^-\pi^+\pi^0 \end{aligned}$$

Studied at the LHCb using the ET

Can we still use the EMD?

What about larger Data sets?

$$egin{aligned} D^0 & o \pi^+\pi^-\pi^0 \ ar D^0 & o \pi^-\pi^+\pi^0 \end{aligned}$$

Studied at the LHCb using the ET

Can we still use the EMD?

Yes, but ...

What about larger Data sets?

$$egin{aligned} D^0 & o \pi^+\pi^-\pi^0 \ ar D^0 & o \pi^-\pi^+\pi^0 \end{aligned}$$

- Very small non-zero CP violation
- Studied at the LHCb using the ET

Can we still use the EMD?

Yes, but ...

Computationally expensive

→ Very memory intensive

What about larger Data sets?

We propose two solutions

Use Sliced Wasserstein Distance as test statistic!

Use Sliced Wasserstein Distance as test statistic!

Wasserstein distance (WD)

$$W_{q}(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} (\hat{d}_{ij})^{q}\right]^{1/q}$$

Sliced Wasserstein distance

- Projects high dimensional data into one dimensional "slices"
- ✤ WD in 1D has a closed form solution
 - Sorted Difference of the two samples

Sliced Wasserstein distance

How many slices do we need to converge?

How many slices do we need to converge?

Comparison with W_q

EMD is a robust, model independent, and unbinned test statistic for CPV!

highly sensitive to CPV

Interpretable

Future work

- Improving the test further
- Time-dependent CPV
- Flavor Violation

Public code:

https://github.com/ada mdddave/EMD4CPV

Back up

Results for B decay

$$\equiv \frac{1}{N_e} \sum_{i=1}^{N_e} \begin{cases} +1 & p_i(W_q) < p_i(T), \\ 0 & \text{otherwise,} \end{cases}$$

 ϵ

 $\delta W_q > 0$: W_q receives contributions from non CPV areas

Slightly smaller sensitivity than ET

Results for B decay

Earth Mover's Distance as a Meassure of CP Violation

Windowed Wasserstein distance

Windowed Wasserstein distance

Results for B decay

"Normal" Wasserstein distance

Binned Wasserstein distance

Binned Wasserstein distance

Binned Wasserstein distance

Binned EMD

67