## Mixing and indirect CPV in charm decays at LHCb

**Federico Betti on behalf** of the LHCb collaboration



21 September 2023



12th International Workshop on the **CKM Unitarity Triangle** 





**UK Research** and Innovation



## Outline

- Mixing formalism
- Charm at LHCb
- $\Delta Y_f \text{ in } D^0 \to h^+ h^-$

• 
$$y_{CP}^f - y_{CP}^{K\pi}$$

- $D^0 \to K^0_s \pi^+ \pi^-$
- $\gamma$  + charm combination
- Prospects and conclusions



2

## *CP* violation in charm

$$A_{C\!P}(D \to f) = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

- Direct *CP* violation when  $|A_f|^2 \neq |\overline{A}_{\overline{f}}|^2$  (see <u>talk</u> by Jolanta)
- For oscillating neutral mesons, mass eigenstates  $|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$ 
  - *CP* violation in mixing when  $|q/p| \neq 1$
  - *CP* violation in decay-mixing interference when  $\phi_f \equiv \arg[(qA_f)/(pA_f)] \neq 0$

### **Phenomenological parametrisation**

$$x \equiv \frac{2(m_1 - m_2)}{\Gamma_1 + \Gamma_2}, \quad y \equiv \frac{\Gamma_2 - \Gamma_1}{\Gamma_1 + \Gamma_2}, \quad \left|\frac{q}{p}\right| - 1$$

 $x^2 - y^2 =$ 

$$\left|\frac{q}{p}\right|^{\pm 2} \left(x^2 + y^2\right) =$$

### Federico Betti on behalf of LHCb

### CKM workshop 2023 - 21/09/2023



### **Theoretical parametrisation**

$$x_{12} \equiv \frac{2|M_{12}|}{\Gamma_1 + \Gamma_2}, \quad y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma_1 + \Gamma_2}, \quad \phi_{12} \equiv \arg\left(\frac{M_1}{\Gamma_1}\right)$$

$$x_{12}^2 - y_{12}^2,$$

 $xy = x_{12}y_{12}\cos\phi_{12},$ 

PRL 103 (2009) 071602 PRD 80 (2009) 076008 PRD 103 (2021) 053008

 $x_{12}^2 + y_{12}^2 \pm 2x_{12}y_{12}\sin\phi_{12}$ 





## Charm at LHCb

- Large  $c\overline{c}$  production cross section  $\sigma(pp \to c\bar{c}X)_{\sqrt{s=13 \text{ TeV}}} = (2369 \pm 3 \pm 152 \pm 118) \ \mu b$
- More than 1 billion  $D^0 \to K^- \pi^+$  decays reconstructed with the full LHCb data sample
- Two ways to tag the  $D^0$ 
  - Prompt tag: look at  $\pi$  charge in  $D^{*\pm} \rightarrow D^0 \pi^{\pm} \Rightarrow$  higher statistics
  - Semileptonic tag: look at  $\mu$  charge in  $\overline{B} \to D^0 \mu^- \overline{\nu}_{\mu} X \Rightarrow$  access lower decay time
- Time-dependent analyses are less affected by experimental (detection, production) asymmetries than time-integrated measurements
- Selection induces correlations between kinematics and decay time, potentially dangerous for time-dependent analyses  $\Rightarrow$  corrections or dedicated trigger lines are needed

Federico Betti on behalf of LHCb



- JHEP 05 (2017) 074  $\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \, \mu b$ 
  - $\sigma(pp \to D^+X) = 834 \pm 2 \pm 78 \,\mu b$
  - $\sigma(pp \rightarrow D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$
  - $\sigma(pp \to D^{*+}X) = 784 \pm 4 \pm 87 \,\mu b$









 $\Delta Y_f \text{ in } D^0 \to K^+ K^- \text{ and } D^0 \to \pi^+ \pi^-$ 

 $A_{CP}(D^0 \to f, t) = a_f^d(D^0 \to f) + \Delta Y_f \frac{t}{\tau_{D^0}}$ 

$$\Delta Y_f \simeq -x_{12} \sin \phi_f^{1}$$

- $\Delta Y_{K+K-} = \Delta Y_{\pi^+\pi^-} = \Delta Y$  at current level of precision
- SM expectation  $\sim 2 \times 10^{-5}$  PRD 103 (2021) 053008 PLB 810 (2020) 135802
- Strategy: measure asymmetry in bins of  $D^0$  decay time and measure the linear slope
- Selection induces correlations between kinematics and decay time 
   possible timedependent nuisance asymmetries are removed by equalising  $D^0$  and  $\overline{D}^0$  kinematics

•  $D^0 \rightarrow K^- \pi^+$  is used as a control sample ( $\Delta Y_{K^- \pi^+} < 3 \times 10^{-5}$  from experimental results)

Federico Betti on behalf of LHCb

CKM workshop 2023 - 21/09/2023



### PRD 104 (2021) 072010

 $f_{f}^{M} + y_{12}a_{f}^{d} \simeq -x_{12}\sin\phi_{12}$ 

Neglecting *CP* violation in the decay

 $\phi_f^M \equiv \arg\left(\frac{M_{12}A_f}{\overline{A}_f}\right) \simeq \phi_{12}$ 

Superweak approximation





 $\Delta Y_f \text{ in } D^0 \to K^+ K^- \text{ and } D^0 \to \pi^+ \pi^-$ 

- time
- asymmetry with a multidimensional fit on (IP, t)





• Combinatorial background removed with sideband subtraction in  $m(D^0\pi^+)$  in each decay

• A correction is applied for contamination of secondary  $D^0$  by measuring their size and

CKM workshop 2023 - 21/09/2023



 $\Delta Y_f \text{ in } D^0 \to K^+ K^- \text{ and } D^0 \to \pi^+ \pi^-$ 



- Compatible with 0 within  $2\sigma$
- This result improves by nearly a factor 2 the precision of the previous world average

CKM workshop 2023 - 21/09/2023





-20

-40

20

 $\Delta Y [10^{-4}]$ 

40







- $y_{CP}^{J}$  parameterises the difference between the effective decay width of  $D^0 \rightarrow f \ (f = K^- K^+, \pi^- \pi^+) \text{ and } \Gamma$
- $D^0 \to K^- \pi^+$  effective width is used as a proxy for  $\Gamma$ , but  $y_{CP}^{K\pi}$  must be taken into account



CKM workshop 2023 - 21/09/2023



## $y_{CP}^{f} = \frac{\hat{\Gamma}(D^{0} \to f) + \hat{\Gamma}(\overline{D}^{0} \to f)}{2\Gamma} - 1$

# $\begin{aligned} & \mathbf{O} \quad \hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}{}^0 \to f) \\ & \\ & \hat{\Gamma}(D^0 \to K^-\pi^+) + \hat{\Gamma}(\overline{D}{}^0 \to K^-\pi^+) - 1 \simeq y_{C\!P}^f - y_{C\!P}^{K\pi} \end{aligned}$

$$\sqrt{R_D} = \sqrt{\frac{\mathscr{B}(D^0 \to K^+ \pi^-)}{\mathscr{B}(D^0 \to K^- \pi^+)}} \simeq 6\%$$









• Experimentally: measure yield ratio as a function of decay time

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi})t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

- Selection efficiency equalised with a novel data-driven kinematic weighting procedure
- Analysis procedure validated on simulation and by checking that  $y_{CP}^{CC} = 0$  in the measurement  $R^{CC}(t) = \frac{N(D^0 \to \pi^- \pi^+, t)}{N(D^0 \to K^- K^+, t)} \propto e^{-y_{CP}^{CC} t/\tau_{D^0}} \frac{\varepsilon(\pi^- \pi^+, t)}{\varepsilon(K^- K^+, t)}$
- Run 2 data sample,  $D^0$  tagged by prompt decays



### PRD 105 (2022) 092013

CKM workshop 2023 - 21/09/2023



### PRD 105 (2022) 092013

### $y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3}$

### $y_{CP}^{CC} = (0.15 \pm 0.36) \times 10^{-3}$ $\rightarrow$ compatible with 0

 $y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3}$ 

Federico Betti on behalf of LHCb

CKM workshop 2023 - 21/09/2023











### PRD 105 (2022) 092013

Federico Betti on behalf of LHCb

CKM workshop 2023 - 21/09/2023



### Average between *KK* and $\pi\pi$ : $y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$





- $D^0 \rightarrow K_c^0 \pi^+ \pi^-$  is particularly sensitive to x
- PRD 99 (2019) 012007 Analysis performed with model-independent bin-flip method, which does not require accurate modelling of the efficiency
- Prompt tag: led to observation of  $x \neq 0$  PRL 127 (2021) 111801
- Semileptonic tag: allows to probe the low decay-time region (most recent with Run 2 data reported here)

Federico Betti on behalf of LHCb





- Measure, as a function of the  $D^0$  decay time, the yield ratios between symmetric bins in the Dalitz plot  $(m_+^2, m_-^2) \rightarrow$  they can be written as a function of  $x_{CP}$ ,  $y_{CP}$ ,  $\Delta x$  and  $\Delta y$
- Signal selection induces correlation between decay time and phase-space that could bias the measurement  $\rightarrow$  a data-driven correction is applied to make the decay-time acceptance uniform in the phase space

$$x_{CP} = \frac{1}{2} \left[ x \cos \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta x = \frac{1}{2} \left[ x \cos \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$
$$y_{CP} = \frac{1}{2} \left[ y \cos \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta y = \frac{1}{2} \left[ y \cos \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

Federico Betti on behalf of LHCb

CKM workshop 2023 - 21/09/2023







Almost constant strong-phase PRD 82 (2010) 112006 difference in each Dalitz bin PRD 101 (2020) 112002 external inputs from CLEO and BESIII





Two categories of  $K_{\rm s}^0 \rightarrow \pi^+ \pi^-$ : long-long (LL) and downstreamdownstream (DD)



• *CP*-averaged ratios Deviations from constant

values are due to mixing



### Federico Betti on behalf of LHCb





### PRD 108 (2023) 052005

### • Differences of $D^0$ and $\overline{D}^0$ yield ratios

Deviations from constant values are due to *CP* violation





PRL 127 (2021) 111801 Combination with prompt Run 2 result:

 $x_{CP} = [4.01 \pm 0.45(\text{stat}) \pm 0.20(\text{syst})] \times 10^{-3},$  $y_{CP} = [5.51 \pm 1.16(\text{stat}) \pm 0.59(\text{syst})] \times 10^{-3},$  $\Delta x = [-0.29 \pm 0.18(\text{stat}) \pm 0.01(\text{syst})] \times 10^{-3},$  $\Delta y = [0.31 \pm 0.35(\text{stat}) \pm 0.13(\text{syst})] \times 10^{-3}.$ 

 $D^0 \rightarrow K_s^0 \pi^+ \pi^-$  mode allowed us to reach a very high precision on mixing and  $C\!P$ violating parameters

()

-0.5

Φ









## $\gamma$ + charm combination

### LHCb-CONF-2022-003

- Measurement in beauty sector help to constraint y and hadronic decay parameters of  $D^0 \rightarrow K^- \pi^+ \Rightarrow$ common  $\gamma$  + charm mixing/CPV by LHCb since 2021
- All previously mentioned measurements are included in the latest combination

### See <u>talk</u> by Innes

| Onortita                | Value                                                  | 68.3% CL                                                                                |                                                                               | $95.4\%~\mathrm{CL}$                                                                   |                                                                              |          |
|-------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|
| Quantity                | Quantity V                                             | value                                                                                   | Uncertainty                                                                   | Interval                                                                               | Uncertainty                                                                  | Interval |
| $x[\%] \ y[\%] \  q/p $ | $\begin{array}{c} 0.398 \\ 0.636 \\ 0.995 \end{array}$ | $\begin{array}{r} +0.050 \\ -0.049 \\ +0.020 \\ -0.019 \\ +0.015 \\ -0.016 \end{array}$ | $egin{array}{l} [0.349, 0.448] \ [0.617, 0.656] \ [0.979, 1.010] \end{array}$ | $\begin{array}{r} +0.099 \\ -0.10 \\ +0.041 \\ -0.039 \\ +0.032 \\ -0.032 \end{array}$ | $egin{array}{l} [0.30, 0.497] \ [0.597, 0.677] \ [0.963, 1.027] \end{array}$ |          |
| $\phi[^{\circ}]$        | -2.5                                                   | $^{+1.2}_{-1.2}$                                                                        | $\left[-3.7,-1.3\right]$                                                      | +2.4<br>-2.5                                                                           | [-5.0, -0.1]                                                                 |          |

### Federico Betti on behalf of LHCb

### CKM workshop 2023 - 21/09/2023





Frequentist approach 173 observables 52 parameters



## Future prospects

- The LHCb Upgrade I will reduce  $\sigma_{\rm stat}$  by a factor 3
  - higher integrated luminosity
  - removal of hardware trigger  $\rightarrow$  higher trigger efficiency, smaller detection asymmetries
- After Run 5 (Upgrade II) precisions expected to increase by an order of magnitude
  - Sampl
  - Run 1
  - Run 1
  - Run 1

Run 1

Federico Betti on behalf of LHCb



| $D^0 \to K_s^0 \pi^+ \pi^-$           |                     |                   |             |             |                 |  |
|---------------------------------------|---------------------|-------------------|-------------|-------------|-----------------|--|
| Sample (lumi $\mathcal{L}$ )          | Tag                 | Yield             | $\sigma(x)$ | $\sigma(y)$ | $\sigma( q/p )$ |  |
| $3_{\rm un} 1_2 (0  {\rm fb}^{-1})$   | $\mathbf{SL}$       | 10M               | 0.07%       | 0.05%       | 0.07            |  |
| un 1-2 (910)                          | Prompt              | 36M               | 0.05%       | 0.05%       | 0.04            |  |
| $2_{111} = 1 - 3 (23 \text{ fb} - 1)$ | $\mathbf{SL}$       | 33M               | 0.036%      | 0.030%      | 0.036           |  |
| 1-3(2310)                             | Prompt              | 200M              | 0.020%      | 0.020%      | 0.017           |  |
| 3  up  1 - 4 (50  fb - 1)             | $\operatorname{SL}$ | 78M               | 0.024%      | 0.019%      | 0.024           |  |
| ull 1–4 (50 lb )                      | Prompt              | 520M              | 0.012%      | 0.013%      | 0.011           |  |
| $3_{\rm un} 1_5 (300  {\rm fb}^{-1})$ | $\operatorname{SL}$ | 490M              | 0.009%      | 0.008%      | 0.009           |  |
| (300 ID)                              | Prompt              | $3500 \mathrm{M}$ | 0.005%      | 0.005%      | 0.004           |  |
|                                       |                     |                   |             |             |                 |  |

### LHCB-PUB-2018-009

### $D^0 \rightarrow h^+ h^-$

| le $(\mathcal{L})$         | Tag               | Yield $K^+K^-$  | $\sigma(A_{\Gamma})$ | Yield $\pi^+\pi^-$ | (  |
|----------------------------|-------------------|-----------------|----------------------|--------------------|----|
| $-2 (9 \text{ fb}^{-1})$   | Prompt            | 60M             | 0.013%               | 18M                | 0  |
| $-3 (23 \text{ fb}^{-1})$  | Prompt            | 310M            | 0.0056%              | 92M                | 0. |
| $-4 (50 \text{ fb}^{-1})$  | Prompt            | 793M            | 0.0035%              | 236M               | 0. |
| $-5 (300 \text{ fb}^{-1})$ | $\mathbf{Prompt}$ | $5.3\mathrm{G}$ | 0.0014%              | 1.6G               | 0. |

CKM workshop 2023 - 21/09/2023





## Landscape after 10 years



Federico Betti on behalf of LHCb









## Landscape after 10 years



Federico Betti on behalf of LHCb









## Conclusions

- The analysis of the full data sample collected by LHCb allowed  $D^0$  mixing and time-dependent CP violating parameters to be measured with impressive precision ~  $\mathcal{O}(10^{-4})$
- These measurements are statistically dominated  $\Rightarrow$  Run 3-5 will allow us to further increase our knowledge in this field
- New improved techniques under study in order to further reduce systematic uncertainties







## *P***violation in charm**

- Charm unique laboratory for study of CP violation in up-type quark decays
- Due to smallness of involved CKM elements and GIM mechanism, CP violation in charm decays predicted to be small:  $A_{CP} \sim 10^{-4} - 10^{-3}$
- SM calculations dominated by long distance contributions
- LHCb huge charm data sample allowed direct CP violation to be observed in  $D^0 \rightarrow h^+h^-$  decays by LHCb in March 2019!  $\Rightarrow$  observed value challenges first-principles QCD calculations  $\Rightarrow$ enhancement of QCD rescattering or NP?
- Further measurements are needed in charm sector









## Charm at LHCb

- Large  $c\overline{c}$  production cross section  $\sigma(pp \to c\bar{c}X)_{\sqrt{s=13 \text{ TeV}}} = (2369 \pm 3 \pm 152 \pm 118) \ \mu b$
- More than 1 billion  $D^0 \to K^- \pi^+$  decays reconstructed with the full LHCb data sample
- JINST 3 (2008) S08005 • LHCb detector:
  - + Excellent vertex resolution (13  $\mu$ m in transverse plane for PV)
  - + Excellent IP resolution (  $\sim 20 \ \mu m$ )
  - + Very good momentum resolution ( $\delta p/p \sim 0.5\% 0.8\%$ )
  - Excellent PID capabilities
  - Very good trigger efficiency (~90%)

### Federico Betti on behalf of LHCb



JHEP 05 (2017) 074  $\sigma(pp \to D^0 X) = 2072 \pm 2 \pm 124 \,\mu b$  $\sigma(pp \rightarrow D^+X) = 834 \pm 2 \pm 78\,\mu\text{b}$  $\sigma(pp \to D_s^+ X) = 353 \pm 9 \pm 76 \,\mu b$  $\sigma(pp \to D^{*+}X) = 784 \pm 4 \pm 87\,\mu b$ 





 $\Delta Y_f \text{ in } D^0 \to K^+ K^- \text{ and } D^0 \to \pi^+ \pi^-$ 

- in each decay time
- asymmetry with a multidimensional fit on (IP, t)





• Signal yield obtained with a sideband subtraction in  $m(D^0\pi^+)$  after fitting the distribution

• A correction is applied for contamination of secondary  $D^0$  by measuring their size and







 $\Delta Y_f \text{ in } D^0 \to K^+ K^- \text{ and } D^0 \to \pi^+ \pi^-$ 

• Systematic uncertainties

### Source

Subtraction of the  $m(D^0 \pi_{\text{tag}}^+)$ backgr Flavour-dependent shift of  $D^*$  -mass  $D^{*+}$  from B -meson decays  $m(h^+h^-)$  background Kinematic weighting

Total systematic uncertainty Statistical uncertainty

|                       | $\Delta Y_{K^+K^-}$ [10 <sup>-4</sup> ] | $\Delta Y_{\pi^+\pi^-}~[10^{-4}]$ |
|-----------------------|-----------------------------------------|-----------------------------------|
| round                 | 0.2                                     | 0.3                               |
| $\operatorname{peak}$ | 0.1                                     | 0.1                               |
|                       | 0.1                                     | 0.1                               |
|                       | 0.1                                     | 0.1                               |
|                       | 0.1                                     | 0.1                               |
|                       | 0.3                                     | 0.4                               |
|                       | 1.5                                     | 2.8                               |
|                       |                                         |                                   |

### CKM workshop 2023 - 21/09/2023



### γ + charm combination

| 00.07                                                                                                                                                                                                                                                   | 570 UL             | 95.4                 | 4% (  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------|
| Ref. [14] Quantity Value<br>Uncertainty                                                                                                                                                                                                                 | Interval           | Uncertainty          |       |
| $B^{\pm} \to Dh^{\pm}$ $D \to h^{+}h^{-}$ [29] Run 1&2 As before $\gamma[\circ]$ 63.8 $^{+3.5}_{-3.7}$                                                                                                                                                  | [60.1, 67.3]       | $^{+6.9}_{-7.5}$     | [}    |
| $B^{\pm} \to Dh^{\pm}$ $D \to h^{+}\pi^{-}\pi^{+}\pi^{-}$ [30] Run 1 As before $r_{R^{\pm}}^{DK^{\pm}}$ 0.0972 $^{+0.0022}_{-0.0021}$ [                                                                                                                 | [0.0951, 0.0994]   | +0.0045              | [0.0] |
| $B^{\pm} \to Dh^{\pm}$ $D \to K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ [18] Run 1&2 New $\delta_{R^{\pm}}^{DK^{\pm}}[^{\circ}]$ 127.3 $^{+3.4}_{-3.5}$                                                                                                           | [123.8, 130.7]     | +6.5                 | [1:   |
| $B^{\pm} \to Dh^{\pm}$ $D \to h^{+}h^{-}\pi^{0}$ [19] Run 1&2 Updated $r_{B^{\pm}}^{D^{\pm}}$ 0.00490 $^{+0.00059}_{-0.00053}$ [0                                                                                                                       | [0.00437, 0.00549] | +0.0013              | [0.0] |
| $B^{\pm} \to Dh^{\pm}$ $D \to K_{\rm S}^0 h^+ h^-$ [31] Run 1&2 As before $\delta_{P^{\pm}}^{D^{\pm}}[^{\circ}]$ 294.0 $^{+9.7}_{-11}$                                                                                                                  | [283, 303.7]       | +19                  |       |
| $B^{\pm} \to Dh^{\pm}$ $D \to K_{\rm S}^0 K^{\pm} \pi^{\mp}$ [32] Run 1&2 As before $r_{P_{\pm}}^{D^{\pm} K^{\pm}}$ 0.098 $^{+0.017}_{-0.019}$                                                                                                          | [0.079, 0.115]     | +0.031               | [0]   |
| $B^{\pm} \to D^* h^{\pm}$ $D \to h^+ h^-$ [29] Run 1&2 As before $\delta_{D^+ K^\pm}^{D^+ K^\pm} [\circ]$ 308 $+ 12 - 0.019$                                                                                                                            | [283, 320]         | +21                  | 1-    |
| $B^{\pm} \to DK^{*\pm}$ $D \to h^+h^-$ [33] Run 1&2(*) As before $r_{D^+\pi^{\pm}}^{D^+\pi^{\pm}}$ 0.0091 $^{+0.0081}_{+0.0056}$ [                                                                                                                      | [0.0035, 0.0172]   | +0.016               | [0.   |
| $B^{\pm} \to DK^{*\pm}$ $D \to h^{+}\pi^{-}\pi^{+}\pi^{-}$ [33] Run 1&2(*) As before $\delta_{D^{+}\pi^{\pm}}^{D^{+}\pi^{\pm}}$ 137 $+22$                                                                                                               | [54, 159]          | +32                  | [     |
| $B^{\pm} \to Dh^{\pm}\pi^{+}\pi^{-}$ $D \to h^{+}h^{-}$ [34] Run 1 As before $r_{DK^{\pm\pm}}^{DK^{\pm\pm}}$ 0.108 $r_{DR^{\pm\pm}}^{+0.016}$                                                                                                           | [0.089, 0.124]     | +0.030               | [0]   |
| $B^0 \to DK^{*0}$ $D \to h^+h^-$ [35] Run 1&2(*) As before $\delta_{DK^{*\pm}}^{DK^{*\pm}}$ 34 $+20$                                                                                                                                                    | [19, 54]           | -0.039<br>+54        | [     |
| $B^0 \to DK^{*0}$ $D \to h^+ \pi^- \pi^+ \pi^-$ [35] Run 1&2(*) As before $r_{DK^{*0}}^{0.5}$ 0.249 $+0.022$                                                                                                                                            | [0.224, 0.271]     | -28<br>+0.044        | [0]   |
| $B^0 \to DK^{*0}$ $D \to K_{\rm S}^0 \pi^+ \pi^-$ [36] Run 1 As before $\delta_{DK^{*0}}^{DK^{*0}} [\circ]$ 198 $+10^{+10}$                                                                                                                             | [188 4 208]        | -0.051<br>+24        | 10.   |
| $B^0 \to D^{\mp} \pi^{\pm}$ $D^+ \to K^- \pi^+ \pi^+$ [37] Run 1 As before $r_{D_s^{\mp} K^{\pm}}^{O_B^{\mp} -1}$ 0.310 $+0.096$                                                                                                                        | [0.216, 0.406]     | -19<br>+0.20         |       |
| $B_s^0 \to D_s^{\mp} K^{\pm} \qquad D_s^+ \to h^+ h^- \pi^+ \qquad [38] \qquad \text{Run 1} \qquad \text{As before} \qquad \begin{array}{c} & B_s^0 & 0.010 & -0.094 \\ & & & & \\ s^{D_s^{\mp} K^{\pm}} [\circ] & 256 & +19 \end{array}$               | [929, 975]         | -0.22<br>+39         | ľ     |
| $B_s^0 \to D_s^{\mp} K^{\pm} \pi^+ \pi^- \qquad D_s^+ \to h^+ h^- \pi^+ \qquad [39] \qquad \text{Run 1\&2} \qquad \text{As before} \qquad \begin{array}{c} o_{B_s^0} & [ \ ] & 550 & -18 \\ D_s^{\mp} K^{\pm} \pi^+ \pi^- & 0.460 & +0.081 \end{array}$ | [0.975_0.541]      | -38 + 0.16           | E,    |
| $D$ decay Observable(s) Ref. Dataset Status since $r_{B_4^0}^{=0.085} = 0.460$ $-0.085$                                                                                                                                                                 | [0.375, 0.541]     | -0.17                | l     |
| Ref. [14] $\delta_{B_s^0}^{D_s \cap A \cap A} [\circ] 346 \begin{bmatrix} +12 \\ -12 \end{bmatrix}$                                                                                                                                                     | [334, 358]         | -25                  | -     |
| $D^0 \to h^+ h^ \Delta A_{CP}$ [24, 40, 41] Run 1&2 As before $r_{B^0}^{D^+\pi^{\pm}}$ 0.030 $^{+0.016}_{-0.012}$                                                                                                                                       | [0.018, 0.046]     | +0.041<br>-0.027     | [0.   |
| $D^0 \to K^+ K^ A_{CP}(K^+ K^-)$ [16, 24, 25] Run 2 New $\delta_{B^0}^{D^+ \pi^+} [\circ]$ 32 $^{+20}_{-40}$                                                                                                                                            | [-8, 58]           | +45<br>-86           |       |
| $D^0 \to h^+ h^ y_{CP} - y_{CP}^{K^- \pi^+}$ [42] Run 1 As before $r_{B^{\pm}}^{DK^{\pm} \pi^+ \pi^-} = 0.079 + 0.028 - 0.034$                                                                                                                          | [0.045, 0.107]     | +0.049<br>-0.079     | [0.   |
| $D^{0} \to h^{+}h^{-} \qquad y_{CP} - y_{CP}^{K^{-}\pi^{+}} \qquad \boxed{15} \qquad \text{Run } 2 \qquad \text{New} \qquad r_{B^{\pm}}^{D\pi^{\pm}\pi^{+}\pi^{-}} \qquad 0.068 \qquad \substack{+0.026 \\ -0.030 \\ -0.030 \end{array}$                | [0.038, 0.094]     | +0.039<br>-0.068     | [0.   |
| $D^0 \to h^+ h^ \Delta Y$ [43] 46] Run 1&2 As before $x[\%]$ 0.398 $^{+0.050}_{-0.049}$                                                                                                                                                                 | [0.349, 0.448]     | +0.099<br>-0.10      | [0    |
| $D^0 \to K^+ \pi^-$ (Single Tag) $R^{\pm}, (x'^{\pm})^2, y'^{\pm}$ [47] Run 1 As before $y[\%]$ 0.636 $^{+0.020}_{-0.019}$                                                                                                                              | [0.617, 0.656]     | $^{+0.041}_{-0.039}$ | [0.   |
| $D^0 \to K^+ \pi^-$ (Double Tag) $R^{\pm}$ , $(x'^{\pm})^2$ , $y'^{\pm}$ [48] Run 1&2(*) As before $r_D^{K\pi}[\%]$ 5.865 $^{+0.014}_{-0.015}$                                                                                                          | [5.850, 5.879]     | $^{+0.029}_{-0.030}$ | [5]   |
| $D^0 \to K^{\pm} \pi^{\mp} \pi^+ \pi^ (x^2 + y^2)/4$ [49] Run 1 As before $\delta_D^{K\pi}[^\circ]$ 190.2 $^{+2.8}_{-2.8}$                                                                                                                              | [187.4, 193.0]     | $^{+5.6}_{-6.1}$     | [13]  |
| $D^0 \to K_{\rm S}^0 \pi^+ \pi^ x, y$ [50] Run 1 As before $ q/p $ 0.995 $^{+0.015}_{-0.016}$                                                                                                                                                           | [0.979, 1.010]     | $^{+0.032}_{-0.032}$ | [0.   |
| $D^0 \to K_{\rm S}^0 \pi^+ \pi^ x_{CP}, y_{CP}, \Delta x, \Delta y$ [51] Run 1 As before $\phi[^\circ]$ -2.5 $^{+1.2}_{-1.2}$                                                                                                                           | [-3.7, -1.3]       | $^{+2.4}_{-2.5}$     | [-    |
| $D^0 \to K_{\rm S}^0 \pi^+ \pi^ x_{CP}, y_{CP}, \Delta x, \Delta y$ [52] Run 2 As before $a_{K^+K^-}^{\rm d}$ [%] 0.090 $^{+0.057}_{-0.057}$                                                                                                            | [0.033, 0.147]     | $^{+0.11}_{-0.12}$   | [-    |
| $D^0 \to K_{\rm S}^0 \pi^+ \pi^- \ (\mu^- \ {\rm tag}) \qquad x_{CP}, \ y_{CP}, \ \Delta x, \ \Delta y \qquad \boxed{17} \qquad {\rm Run} \ 2 \qquad {\rm New} \qquad \underline{a_{\pi^+\pi^-}^{\rm d}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$           | [0.178, 0.301]     | $^{+0.12}_{-0.12}$   | [     |

### LHCb-CONF-2022-003

### Federico Betti on behalf of LHCb

### CKM workshop 2023 - 21/09/2023



CLInterval 56.3, 70.70930, 0.101720.0, 133.8] 0039, 0.0062][272, 313].061, 0.129] [239, 329].0006, 0.025][7, 169].069, 0.138] [6, 88].198, 0.293] [179, 222][0.09, 0.51][318, 395][0.29, 0.62][321, 372].003, 0.071] [-54, 77].000, 0.128]\* .000, 0.107]\* 0.30, 0.497.597, 0.677] .835, 5.894] 84.1, 195.8] .963, 1.027] -5.0, -0.1] -0.03, 0.20[0.12, 0.36]



### y + charm combination

### LHCb-CONF-2022-003

| Decay                                       | Parameters                                                                                                        | Source             | Ref.        | Status since   |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------------|
|                                             |                                                                                                                   |                    |             | Ref. [14]      |
| $B^\pm \to D K^{*\pm}$                      | $\kappa^{DK^{*\pm}}_{B^{\pm}}$                                                                                    | LHCb               | [33]        | As before      |
| $B^0 \to DK^{*0}$                           | $\kappa^{DK^{st 0}}_{B^0}$                                                                                        | LHCb               | [53]        | As before      |
| $B^0 \to D^{\mp} \pi^{\pm}$                 | eta                                                                                                               | HFLAV              | [13]        | As before      |
| $B^0_s \to D^{\mp}_s K^{\pm}(\pi\pi)$       | $\phi_s$                                                                                                          | HFLAV              | [13]        | As before      |
| $D \to K^+ \pi^-$                           | $\cos \delta_D^{K\pi},  \sin \delta_D^{K\pi},  (r_D^{K\pi})^2,  x^2,  y$                                          | CLEO-c             | [27]        | New            |
| $D \to K^+ \pi^-$                           | $A_{K\pi},  A_{K\pi}^{\pi\pi\pi^{0}},  r_{D}^{K\pi} \cos \delta_{D}^{K\pi},  r_{D}^{K\pi} \sin \delta_{D}^{K\pi}$ | BESIII             | [28]        | $\mathbf{New}$ |
| $D \to h^+ h^- \pi^0$                       | $F^+_{\pi\pi\pi^0},  F^+_{KK\pi^0}$                                                                               | CLEO-c             | [54]        | As before      |
| $D \to \pi^+\pi^-\pi^+\pi^-$                | $F^+_{4\pi}$                                                                                                      | CLEO-c+BESIII      | [26, 54]    | Updated        |
| $D \to K^+ \pi^- \pi^0$                     | $r_D^{K\pi\pi^0},\delta_D^{K\pi\pi^0},\kappa_D^{K\pi\pi^0}$                                                       | CLEO-c+LHCb+BESIII | [55-57]     | As before      |
| $D \to K^\pm \pi^\mp \pi^+ \pi^-$           | $r_D^{K3\pi},\delta_D^{K3\pi},\kappa_D^{K3\pi}$                                                                   | CLEO-c+LHCb+BESIII | [49, 55-57] | As before      |
| $D \to K^0_{\rm S} K^\pm \pi^\mp$           | $r_D^{K_{ m S}^0 K \pi},  \delta_D^{K_{ m S}^0 K \pi},  \kappa_D^{K_{ m S}^0 K \pi}$                              | CLEO               | [58]        | As before      |
| $D  ightarrow K_{ m S}^0 K^{\pm} \pi^{\mp}$ | $r_D^{K^0_{ m S}K\pi}$                                                                                            | LHCb               | [59]        | As before      |

### Federico Betti on behalf of LHCb

### CKM workshop 2023 - 21/09/2023

