Measurements of CPV and phases in charm decays at BESIII

Yang Gao

On behalf of the BESIII Collaboration

University of Science and Technology of China

- Recap analysis of CPV and phases in charm decays at BESIIIBESIII experiment
- The quantum correlated(QC) data samples and double-tagging(DT) method
 CPV and strong phase measurement
- ≻The future
- ➤Summary

Recap analysis of CPV and phase in charm decay at BESIII

Conclusion and looking forward

Model-independent strong-phase parameters measured by BESIII essential for the improved determination of mixing and indirect CP violation parameters

Unique samples of threshold D, D_s and Λ decays can be searched for direct CP surprises, particularly in multibody modes with neutrals

Future Physics Programme at BESIII - Chin. Phys. C 44, 040001 (2020)

- 20 fb⁻¹ at $\psi(3770)$ – run underway prior to BEPC upgrade in 2023

Improving c_i and s_i for charm mixing and indirect CP violation one of the primary motivators

- **BESIII** provides unique quantum correlated $D^0\overline{D}^0$ data to measure the strong-phase parameters in D decays as inputs to LHCb and Belle II for CKM angle γ measurement in the b sector
- Using 2.93 fb⁻¹ e⁺e⁻ collision data taken @ 3.773 GeV with BESIII detector, strong phase parameters of four D⁰ decays are reported
 - $K_S^0 \pi^+ \pi^-, K_S^0 K^+ K^-, K^- \pi^+ \pi^0, K^- \pi^+ \pi^+ \pi^-$

[CPC 44, 040001 (2020)]

Reference: CKM 2021:

https://indico.cern.ch/event/891123/contributio ns/4601759/attachments/2350184/4008550/C KM%202021%20-%20charm%20CPV%20and%20mixing.pdf

Reference: CKM 2021:

https://indico.cern.ch/event/891123/contributio ns/4601746/attachments/2352942/4014577/C KM2021_strongphaseBESIII_shanxy.pdf

- $\geq 20 \text{ fb}^{-1} \psi(3770)$ data will be collected in the near future @ BESIII
 - More decays (e.g. $K_S^0 \pi^+ \pi^- \pi^0, \pi^+ \pi^- \pi^+ \pi^-, K^+ K^- \pi^+ \pi^- ...$)
 - Higher precision (e.g. uncertainty on $\gamma \sim 1^{\circ} \rightarrow \sim 0.4^{\circ}$ for $K_{S}^{0}h^{+}h^{-}$)

BESIII experiment

Measurement of CPV in charm decay at BESIII

Experiment	Machine	Operation	C.M.	Luminosity	N _{prod}	Efficiency	Characters
₿€SⅢ	BEPC-II (e ⁺ e ⁻)	2010-2011 (2021-) 2016-2019 2014+2020	3.77 GeV 4.18-4.23 GeV 4.6-4.7 GeV	$\begin{array}{c} 2.9 \ (8 \rightarrow 20) \\ 7.3 \ \text{fb}^{-1} \\ 4.5 \ \text{fb}^{-1} \end{array}$	$egin{array}{lll} D^{0,+}\colon 10^7(o 10^8)\ D_s^+\colon 5 imes 10^6\ \Lambda_c^+\colon 0.8 imes 10^6\ \star 10^6 \end{array}$	~ 10-30%	 extremely clean environment quantum coherence pure D-beam, almost no background no CM boost, no time-dept analyses
B	${f SuperKEKB}\ (e^+e^-)$	2019-	10.58 GeV	0.4 (\rightarrow 50) ab ⁻¹	$D^0 : \ 6 imes 10^8 \ (o \ 10^{11}) \ D^+_{(s)} : \ 10^8 \ (o \ 10^{10})$		 clear event environment high trigger efficiency
	KEKB (e ⁺ e ⁻)	1999-2010	10.58 GeV	$1 ab^{-1}$	$\frac{\Lambda_c^+: 10^7 (\rightarrow 10^9)}{D: 10^9}$ $\frac{\Lambda_c^+: 10^8}{\Lambda_c^+: 10^8}$	O(1-10%)	 good-efficiency detection of neutrals time-dependent analysis smaller cross-section than LHCb
					XXX	××	
LHCb	LHC (<i>pp</i>)	2011,2012 2015-2018 (2022-2025-2029-)	7+8 TeV 13 TeV	$\begin{array}{c} 1+2 \text{ fb}^{-1} \\ 6 \text{ fb}^{-1} \\ (\rightarrow 23 \rightarrow 50) \end{array}$	$5 imes 10^{12}\ 10^{13}$	$\mathcal{O}(0.1\%)$	 very large production cross-section large boost excellent time resolution
		(2022-2023,2029-)		(723-730)	****	*	© dedicated trigger required

• From Long-Ke's reports: Overview of Charm Physics

From LHCb, the direct CP violation observed at 10^{-3} level using $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$.

- PHYSICAL REVIEW LETTERS 122, 211803 (2019)
- > The CP Asymmetry in BESIII is about 10^{-2} .
 - PRL 125 (2020) 14180
 - PRL 124 (2020) 241803
- ▷ No competitive to search for CP violation at BESIII since the achievable D^0 and \overline{D}^0 samples are smaller by more than 2-4 orders of magnitude than those at LHCb and BelleII.

CPV and strong phase measurement

What can BESIII do?

- ▷ BESIII can uniquely explore the quantum coherence of the initial $D^0\overline{D}^0$ state produced at $\psi(3770)$ to provide constraints on the mixing and CPV parameters.
- \succ For decay to CP modes,

$$|D_{+}^{0}\rangle = p|D^{0}\rangle + q|\bar{D}^{0}\rangle \\ |D_{-}^{0}\rangle = p|D^{0}\rangle - q|\bar{D}^{0}\rangle \\ \Gamma_{D^{0}\bar{D}^{0}}^{++} = [(x^{2} + y^{2})(\cosh^{2}a_{m} - \cos^{2}\phi)] \times [\frac{\Gamma^{2}(D^{0} \to f_{+})}{(1 - y^{2})(1 + x^{2})} \\ \phi = \arg(p/q) \qquad R_{m} = |p/q| \qquad a_{m} = \log R_{m}$$

Decays of each D in the $D^0\overline{D}^0$ state into the same CP final states immediately indicate CPV in charm

For Cabibbo-Favored and Double-Cabibbo-Suppressed final states, the decay width and asymmetry are shown,

$$\Gamma_{D^0\bar{D}^0}^{D^0_{K^-\pi^+},\bar{D}^0_{K^+\pi^-}} = \left[(x^2 + y^2) (r^4 R_m^2 - 2r^2 \cos 2(\delta + \phi) + R_m^2) \right] \times \left[\frac{\Gamma^2(D^0_{K^-\pi^+})}{2(1 - y^2)(1 + x^2)} \right]$$

The parameters of CPV are indicated immediately.

CKM 2023-WG7

CPV and strong phase measurement

For Cabibbo-Favored and Double-Cabibbo-Suppressed final states, the decay width and asymmetry are shown,

$$\mathcal{A}_{K\pi} = \frac{R(D_{\rm phys}^0 \to K^- \pi^+) - R(\bar{D}_{\rm phys}^0 \to K^+ \pi^-)}{R(D_{\rm phys}^0 \to K^- \pi^+) + R(\bar{D}_{\rm phys}^0 \to K^+ \pi^-)}$$

$$\approx (\frac{qr}{p})^2 h_{K\pi} \left[(\frac{|p|^2 - |q|^2}{|p|^2 + |q|^2}) \cos(2\phi) (y \cos\delta_{K\pi} + x \sin\delta_{K\pi}) + \sin(2\phi) (y \sin\delta_{K\pi} - x \cos\delta_{K\pi}) \right]$$

The strong phase differences are needed to extract parameters of CPV in some final states.

- Excellent kinematical constrains might make BESIII competitive in studies of CPasymmetries in some multi-body *D* decays which may provide information about strong phase difference in local phase space.
 - Chinese Physics C Vol. 44, No. 4 (2020) 040001
 - JHEP, 03: 021 (2012)

CPV and strong phase measurement

- \succ For binning CP Mixing of D^0 ,
- \blacktriangleright In LHCb, for example, $\overline{B} \rightarrow D^0 (\rightarrow K_S^0 \pi^+ \pi^-) \mu^- \overline{\nu}_{\mu} X$ $|D^0_+>=p|D^0>+q|\bar{D}^0> |D^0_->=p|D^0>-q|\bar{D}^0>$ $x = (m_1 - m_2)c^2/\Gamma \ x_{CP} = \frac{1}{2} \left| x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \ 2m = m_+ + m_-, \ 2\Gamma = \Gamma_+ + \Gamma_-, \ \Delta m = m_+ - m_-, \ \Delta \Gamma = \Gamma_+ - \Gamma_$ $y = (\Gamma_1 - \Gamma_2)/(2\Gamma) \quad y_{CP} = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$ m^2_{-} [GeV²/ c^4 Absolute bin index
- CP-violation differences $\Delta x = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$ $\Delta y = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$
- \blacktriangleright The ratio of yields between the Dalitz bin –b and Dalitz bin +b in the decay-time bin j

$$R_{bj}^{\pm} \approx \frac{r_{b} + \frac{1}{4}r_{b}\langle t^{2}\rangle_{j} \operatorname{Re}\left(z_{CP}^{2} - \Delta z^{2}\right) + \frac{1}{4}\langle t^{2}\rangle_{j} |z_{CP} \pm \Delta z|^{2} + \sqrt{r_{b}}\langle t\rangle_{j} \operatorname{Re}\left[X_{b}^{*}(z_{CP} \pm \Delta z)\right]}{1 + \frac{1}{4}\langle t^{2}\rangle_{j} \operatorname{Re}\left(z_{CP}^{2} - \Delta z^{2}\right) + r_{b}\frac{1}{4}\langle t^{2}\rangle_{j} |z_{CP} \pm \Delta z|^{2} + \sqrt{r_{b}}\langle t\rangle_{j} \operatorname{Re}\left[X_{b}(z_{CP} \pm \Delta z)\right]} \xrightarrow{\mathbf{K}_{b}} \mathbf{E}\left[X_{b}(z_{CP} \pm \Delta z)\right] \xrightarrow{\mathbf{K}_{b}} \mathbf{E}\left[X_{b}(z_{CP} \pm \Delta z\right] \xrightarrow{\mathbf{K}_{b}} \mathbf{E$$

 $\frac{2}{m_{+}^{2}} \frac{2.5}{[\text{GeV}^{2}/c^{4}]}$

2

1.5

1.5

0.5

0.5

The QC data samples and DT

$$\blacktriangleright \text{ Quantum correlated } D^0 \overline{D}^0 \text{ decay at } \psi(3770)$$

$$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \overline{D}^0 \rightarrow fg$$

$$|\psi(3770) \rightarrow \frac{1}{\sqrt{2}}(|D^0 > |\overline{D}^0 > -|\overline{D}^0 > |D^0 >)$$

$$\Gamma(f,g) \propto (1 + \frac{y^2 - x^2}{2})[(r_f)^2 + (r_g)^2 - 2r_f r_g R_f R_g \cos(\delta_f - \delta_g)]$$

 \propto Number of events $+\frac{x^2+y^2}{2}[1+(r_fr_g)^2-2r_fr_gR_fR_g\cos(\delta_f+\delta_g)]$

Where

$$(r_f)^2 = \int |\bar{A}_f|^2 d\Phi / \int |A_f|^2 d\Phi$$
$$R_f e^{-i\delta_f} = \frac{\int A_f^* \bar{A}_f d\Phi}{\sqrt{\int |A_f|^2 d\Phi \int |\bar{A}_f|^2 d\Phi}}$$

Coherence factor Strong phase difference

Advantages

- Absolute branching fractions
- > Quantum correlated $D^0 \overline{D}^0$
- Clean background
- > Full kinematic constraint reconstruct missing particle (ν , K_L^0)

Disadvantages

- Reduced reconstruction efficiency a little.
- Time-integrated measurements only

> There are four results about strong phase at BESIII since CKM2021.

g: tag mode	Process	Events (Million)	Cross Section (nb)	-
D	$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$ $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\bar{D}^0$	87 111	2.88 3.66	-
e^+ $\psi(3770)$ e^-	$e^+e^- \rightarrow \psi(3770) \rightarrow \text{non } D\overline{D}$ $e^+e^- \rightarrow e^{\overline{a}}$	15	0.5	• Inclusive MC
	$e^+e^- \rightarrow qq$ $e^+e^- \rightarrow \tau^+\tau^-$	90	3.0	
f: signal mode	$e^+e^- \rightarrow \gamma J/\psi$ $e^+e^- \rightarrow \gamma \psi(3686)$	33 102	1.1 3.4	

Table 1: The summaries of tag channels

type	tag channel
CP even	$K^+K^-,\pi^+\pi^-,\pi^0\pi^0,K^0_S\pi^0\pi^0,K^0_L\omega_{\pi^+\pi^-\pi^0},K^0_L\pi^0$
CP odd	$K_{S}^{0}\pi^{0}, K_{S}^{0}\eta_{\gamma\gamma}, K_{S}^{0}\eta_{\pi^{+}\pi^{-}\pi^{0}}, K_{S}^{0}\eta_{\rho^{0}\gamma}', K_{S}^{0}\eta_{\pi^{+}\pi^{-}\eta}', K_{S}^{0}\omega_{\pi^{+}\pi^{-}\pi^{0}}, K_{S}^{0}\phi, K_{L}^{0}\pi^{0}\pi^{0}$
CP Mixing	$K^+K^-\pi^0, \pi^+\pi^-\pi^0, \pi^+\pi^-\pi^+\pi^-, K^0_S\pi^+\pi^-\pi^0, K^0_S\pi^+\pi^-, K^0_L\pi^+\pi^-$

• Dataset: Quantum-correlated $D^0 \overline{D}{}^0$ pairs corresponding to an integrated luminosity of 2.93 fb⁻¹ collected at the $\psi(3770)$ resonance by the BESIII experiment

Improved measurement of the strong-phase difference $\delta_D^{K\pi}$ in quantum-correlated $D^0 \overline{D}^0$ decays.

Measurement of the CP-even fraction of $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ Phys. Rev. D 106, 092004 (2022)

> Pure CP tag channels:

$$N(4\pi^{\pm}, g) = 2N_{D^0\bar{D}^0}(1+y^2)\mathcal{B}(4\pi^{\pm})\mathcal{B}(g)[1-\eta^g_{CP}(2F_+^{4\pi^{\pm}}-1)]$$
$$N(g) = 2N_{D^0\bar{D}^0}(1+y^2)\mathcal{B}(g)[1-\eta^g_{CP}(1+y^2)\mathcal{B}(g)][1-\eta^g_{CP}(1+y^2)\mathcal{B}(g)$$

$$N^{\pm} \equiv N(4\pi^{\pm}, g)[1 - \eta_{CP}^{g}y]/N(g) = \mathcal{B}(4\pi^{\pm})[1 - \eta_{CP}^{g}(2F_{+}^{4\pi^{\pm}} - 1)].$$

$$F_+ = \frac{N^+}{N^+ + N^-}$$

Self-conjugate tag channels:

$$N^{\pi^{+}\pi^{-}\pi^{0}} \equiv N(4\pi^{\pm}, \pi^{+}\pi^{-}\pi^{0})[1 - (2F_{+}^{\pi^{+}\pi^{-}\pi^{0}} - 1)y]/N(\pi^{+}\pi^{-}\pi^{0})$$

$$= \mathcal{B}(4\pi^{\pm})[1 - (2F_{+}^{\pi^{+}\pi^{-}\pi^{0}} - 1)(2F_{+}^{4\pi^{\pm}} - 1)].$$

$$\frac{N^{\pi^{+}\pi^{-}\pi^{0}}}{N^{+}} = \frac{[1 - (2F_{+}^{\pi^{+}\pi^{-}\pi^{0}} - 1)(2F_{+}^{4\pi^{\pm}} - 1)]}{2F_{+}^{4\pi^{\pm}}}$$

$$F_{+} = \frac{N^{+}F_{+}^{\pi^{+}\pi^{-}\pi^{0}}}{N^{\pi^{+}\pi^{-}\pi^{0}} - N^{+} + 2N^{+}F_{+}^{\pi^{+}\pi^{-}\pi^{0}}}$$

$$F_{S,L} \pi^{+} \pi^{-}:$$

$$N(4\pi^{\pm}, |i|) = h[K_{i} + K_{-i} - 2\sqrt{K_{i}K_{-i}}c_{i}(2F_{+}^{4\pi^{\pm}} - 1)]$$

$$N'(4\pi^{\pm}, |i|) = h'[K'_{i} + K'_{-i} + 2\sqrt{K'_{i}K'_{-i}}c'_{i}(2F_{+}^{4\pi^{\pm}} - 1)]$$

$$F_{+} = \frac{\Gamma_{+}}{\Gamma_{+} + \Gamma_{-}} = \frac{\int |A_{+}|^{2}d\Phi}{\int |A_{+}|^{2}d\Phi + \int |A_{-}|^{2}d\Phi}$$
Ignore CPV
$$2F_{+} - 1 = \frac{2}{\int |a_{f}|^{2} + |a_{-f}|^{2}d\Phi_{f}} \int |a_{f}||a_{-f}|cos(\Delta\delta_{f})d\Phi_{f}$$

 F_+ contains the information of strong phase difference in total phase space.

CKM 2023-WG7

Measurement of the CP-even fraction of $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ Phys. Rev. D 106, 092004 (2022)

Determination of the CP-even fraction of $D^0 \to K_S^0 \pi^+ \pi^- \pi^0$ Phys. Rev. D 108, 032003 (2023)

8

Data

----- F₊=0

5

Bin pair

 F_+

F₊=0.5

F.=1

fit(F =0.244±0.022)

Other strong phase measurements

 $F_{+} = 0.730 \pm 0.037 \pm 0.021$ More details: Inputs from BESIII for γ , XiaoKang Zhou, WG5, CKM2023.

> Absolute Measurements of Branching Fractions of Cabibbo-Suppressed Hadronic $D^{0(+)}$ **Decays Involving Multiple Pions** Table 3. Summary of the ST yields of $CP \mp \text{tags} (S^{\pm}_{\text{measured}})$, the DT yields tagged by $CP \mp \text{tags} (M^{\pm}_{\text{measured}})$, the CP + fraction

Phys. Rev. D 106, 092005 (2022)

arXiv: 2206.13864v1

 \checkmark Some quick measurements of F_+

 (f_{CP+}) , and the QC factor (f_{QC}) . The uncertainties are statistical only. A "/" denotes unmeasured quantites, occuring for one mode with a high-precision extremal result and for the two CP-eigenstates.

	$D^0 \to K^+ K^- (CP+)$	$D^0 \to K^0_S \pi^0 \ (CP-)$			
$CP \mod$	$S_{\rm measured}^{-}$	$S_{ m measured}^+$			
	57779 ± 287	70512 ± 311			
Decay mode	$M_{\rm measured}^{-}$	$M_{\rm measured}^+$	f_{CP+}	$f_{\rm QC}~(\%)$	Uncertainty (%)
$D^0 \to \pi^+ \pi^- \pi^0$	/	/	0.973 ± 0.017 [5]	93.5 ± 0.5	0.5
$D^0 \to \pi^+\pi^-2\pi^0$	65.7 ± 11.1	169.8 ± 13.9	0.682 ± 0.077	97.4 ± 0.7	0.7
$D^0 \to 4\pi^0$	/	/	1	93.1 ± 0.5	0.5
$D^0 \to 3\pi^0 \eta$	/	/	1	93.1 ± 0.5	0.5
$D^0 \to 2\pi^+ 2\pi^- \pi^0$	37.8 ± 8.3	35.5 ± 6.6	0.438 ± 0.104	100.9 ± 0.9	0.9
$D^0 \to \pi^+\pi^- 3\pi^0$	$5.2^{+3.5}_{-2.8}$	$6.8^{+3.4}_{-2.7}$	$0.520^{+0.338}_{-0.269}$	$99.7^{+3.0}_{-2.4}$	3.0
$D^0 \rightarrow 2\pi^+ 2\pi^- 2\pi^0$	$3.5^{+2.8}_{-2.1}$	15.9 ± 3.7	$0.790^{+0.269}_{-0.255}$	$95.9^{+2.2}_{-2.1}$	2.2

Looking Forward

Decay mode	Quantity of interest	Comments
$D \to K_S^0 \pi^+ \pi^-$	c_i and s_i	Binning schemes as used in the CLEO-c analysis. With 20 fb^{-1} of data at 3.773 GeV, it might be worthwhile to explore alternative binning.
$D \to K^0_S K^+ K^-$	c_i and s_i	Binning schemes as used in the CLEO-c analysis. With 20 fb ⁻¹ of data at 3.773 GeV, it might be worthwhile to explore alternative binning.
$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	R,δ	In bins guided by amplitude models, currently under development by LHCb.
$D \to K^+ K^- \pi^+ \pi^-$	c_i and s_i	Binning scheme guided by the CLEO-c model [68] or potentially an improved model in the future.
$D \to \pi^+ \pi^- \pi^+ \pi^-$	F_+ or c_i and s_i	Unbinned measurement of F_+ . Measurements of F_+ in bins or c_i and s_i in bins could be explored.
$D \to K^{\pm} \pi^{\mp} \pi^0$	R,δ	Simple 2-3 bin scheme could be considered.
$D \to K^0_S K^\pm \pi^\mp$	R,δ	Simple 2 bin scheme where one bin encloses the K^* resonance.
$D \rightarrow \pi^+ \pi^- \pi^0$	F_+	No binning required as $F_+ \sim 1$.
$D \to K_S^0 \pi^+ \pi^- \pi^0$	F_+ or c_i and s_i	Unbinned measurement of F_+ required. Additional measurements of F_+ or c_i and s_i in bins could be explored.
$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to binned measurements of either F_+ or c_i and s_i .
$D \to K^{\pm} \pi^{\mp}$	δ	Of low priority due to good precision available through charm-mixing analyses.

Chinese Physics C Vol. 44, No. 4 (2020) 040001

CKM 2023-WG7

Looking Forward

- > For CPV, the decay of $D^0\overline{D}^0$ to the same CP final states has been studied based on blind analysis and will open data after finishing data taking plan.
- > The CPV from polarization from Λ_c decay is in preparation.
- > For some flavor decays, the strong phases would be updated using 20 fb⁻¹.
- ► For $\pi^+\pi^-\pi^0$ and $K^+K^-\pi^0$, the precision of F_+ would be improve with a factor more than 2 compared with CLEO-c's measurement. (~8 fb⁻¹ in preparation)
- > An optimized binning scheme and a precise c_i and s_i would be determined. (~8 fb⁻¹, ~20 fb⁻¹)
- More precise c_i and s_i for $K_S^0 \pi^+ \pi^-$ and $K_L^0 \pi^+ \pi^-$, it is worthwhile to explore other binning. (~20 fb⁻¹)
- A strong phase analysis of $K^+K^-\pi^+\pi^-$ is performed to measure the strong phase differences in bins of phase space. (~8 fb⁻¹ in preparation) This would be the first binned analysis of this decay.
- > The statistical uncertainty would be reduce significantly with 20 fb⁻¹.

Looking Forward

> K_S⁰π⁺π⁻π⁰
> Large branching fraction: 5.2%
> F₊~0.3

> Only F_+ in BESIII based on 2.93 fb⁻¹.

- > More precise F_+ is preparing.
- An optimized binning scheme and a precise c_i and s_i would be determined.
- ➢ Binned analysis of π⁺π⁻π⁺π⁻ is preparing (2.93 fb⁻¹).
 ➢ More precise of binned analysis π⁺π⁻π⁺π⁻ will be updated.

> More precise F_+ of $\pi^+\pi^-\pi^0\pi^0$ will be measured comparing with the BESIII's quick previous results. > Binned analysis of $\pi^+\pi^-\pi^0\pi^0$ would be explored.

Summary

- ▷ BESIII provides unique quantum correlated $D^0 \overline{D}^0$ data to measure the strong phase differences that are essential for the improved determination of mixing and indirect CP violation parameters.
- > 20 fb⁻¹ ψ (3770) data will be collected in the near future (2024) @BESIII
 - More decays (e.g. $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, $\pi^+\pi^-\pi^+\pi^-$, $K^+K^-\pi^+\pi^-$, $K_S^0\pi^+\pi^-\pi^0$...)
 - Higher precision

Thank you!