V_{ud} , V_{us} , V_{cd} , V_{cs} and semileptonic/leptonic D decays

Bipasha Chakraborty A

Alex Gilman Martin Hoferichter Michal Koval

WG1

September 22nd, 2023

CKM 2023 Santiago de Compostela, Spain

Outline

V_{ud} , V_{us} , and First-Row Unitarity

$V_{cd}\text{, }V_{cs}\text{,}$ and (semi)-leptonic D decays

CKM unitarity

Benchmarks numbers for CKM tests from PDG "12. CKM Quark-Mixing Matrix"

- $\begin{array}{ll} \mbox{first row:} & |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(7) \\ \mbox{second row:} & |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 1.001(12) \\ \mbox{first column:} & |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 = 0.9972(20) \\ \mbox{second column:} & |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 = 1.004(12) \\ \end{array}$
- International Workshop on the CKM Unitarity Triangle (CKM 2023)
- ▶ WG1 also studies CKM unitarity tests involving only $|V_{ij}|$ \hookrightarrow CKM Unitarity Circles

Outline

V_{ud} , V_{us} , and First-Row Unitarity

V_{cd} , V_{cs} , and (semi)-leptonic D decays

 $V_{cd},\,V_{cs},\,\mathrm{and}$ (semi)-leptonic D decays 000000000

Tension in first-row unitarity

Three bands from

$$\bullet \quad K_{\ell 3} = K \to \pi \ell \nu_{\ell}$$

- $\blacktriangleright \pi_{\ell 2}/K_{\ell 2}$
- β decays (superallowed, neutron)

Tensions

$$\begin{split} \Delta_{\mathsf{CKM}} &= |V_{ud}|^2 + |V_{us}|^2 - 1\\ \Delta_{\mathsf{CKM}}^{K_{\ell 2} - K_{\ell 3}} &= -0.016(6) \left[2.6\sigma\right]\\ \Delta_{\mathsf{CKM}}^{K_{\ell 2} - \beta} &= -0.0010(6) \left[1.7\sigma\right]\\ \Delta_{\mathsf{CKM}}^{K_{\ell 3} - \beta} &= -0.0018(6) \left[3.1\sigma\right]\\ \Delta_{\mathsf{CKM}}^{\mathsf{global}} &= -0.0018(6) \left[2.8\sigma\right] \end{split}$$

• Need to improve V_{ud} , V_{us} !

V_{ud} determinations

- 1. Superallowed eta decays ($0^+
 ightarrow 0^+$ nuclear transitions) Talk by
 - M. Gorchtein
 - ► +: many isotopes to average
 - -: nuclear uncertainties
- 2. Neutron decay $\left(n
 ightarrow p e^+ ar{
 u}_e
 ight)$ Talks by W. Dekens, B. Märkisch,

U. Schmidt

- +: no nuclear uncertainties
- ▶ -: need neutron lifetime au_n and decay asymmetry $\lambda = g_A/g_V$
- 3. Pion eta decay $(\pi^+ o \pi^0 e^+ ar{
 u}_e)$ Talk by M. Hoferichter
 - ► +: theoretically pristine
 - ► -: experimentally challenging

Superallowed β decays Talk by M. Gorchtein

Once all corrections are included: CVC —> Ft constant

 δ_C particularly important for alignment!

Fit to 14 transitions: Ft constant within 0.02%

Hardy, Towner 2020

- New method to compute nuclear-structure corrections using dispersion relations
- Modern ab-initio nuclear-structure methods being applied to selected transitions
- Nuclear charge radii to help constrain nuclear-structure calculations
 - \hookrightarrow experimental program at PSI, FRIB, ISOLDE, \ldots

B. Chakraborty A. Gilman M. Hoferichter M. Koval

EFT for neutron decay Talk by W. Dekens

EFT framework

- Explicit separation of scales
- Resum large logarithms
- Systematically improvable

Neutron decay asymmetry Talks by B. Märkisch, U. Schmidt

• Uncertainty in **decay asymmetry** λ dominant

 $|V_{ud}^{n, \text{ best}}| = 0.97402(2)_{\Delta_f} (13)_{\Delta_R} (35)_{\lambda} (20)_{\tau_n} [42]_{\text{total}}$

 \hookrightarrow already close to superallowed β decays

But: assumes PERKEO III vs. aSPECT to be resolved!

PIONEER Talk by M. Hoferichter

A next-generation rare PION dEcay ExpeRiment

Physics goals

• (Phase I) Lepton flavor universality at 10^{-4} in

$$R_{e/\mu} = \frac{\Gamma[\pi^+ \to e^+ \nu_e(\gamma)]}{\Gamma[\pi^+ \to \mu^+ \nu_\mu(\gamma)]}$$

▶ (Phase II+III) **CKM** unitarity V_{ud} at 3×10^{-4} from $\pi^+ \rightarrow \pi^0 e^+ \bar{\nu}_e$

▶ In both cases: factor 10 improvement to match theory errors

Searches for exotics (heavy neutrinos, ...)

- Status
 - Approved to run at PSI 2203.01981
 - R&D ongoing, Phase I to start in 2029

Determination of V_{us} from kaon decays

Talk by M. Moulson:

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{\rm EW} |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \times I_{K\ell}(\lambda_{K\ell}) \left(1 + 2\Delta_K^{SU(2)} + 2\Delta_{K\ell}^{\rm EM}\right)$$
with $K \in (K^*, K^0)$, $\ell \in [\alpha, n]$, and

with $K \in \{K^{\dagger}, K^{\circ}\}$; $\ell \in \{e, \mu\}$, and:

 C_{κ^2} 1/2 for K^+ , 1 for K^0

S_{EW} Universal SD EW correction (1.0232)

Inputs from experiment:

 $\Gamma(K_{\ell^{3}(\gamma)})$

- Rates with well-determined treatment of radiative decays:
 - Branching ratios: K_S, K_L, K^{\pm}
 - Kaon lifetimes
- $I_{K\ell}(\{\lambda\}_{K\ell})$ Integral of form factor over phase space: λ s parameterize evolution in t
 - K_{a2} : Only λ_{\pm} (or $\lambda_{\pm}', \lambda_{\pm}''$)
 - $K_{\mu3}$: Need λ_{\pm} and λ_{0}

Inputs from theory:

 $f_{+}^{K^{0}\pi^{-}}(0)$

 $\Delta_{\kappa}^{SU(2)}$

 $\Delta_{\kappa\ell}^{EM}$

- Hadronic matrix element (form factor) at zero momentum transfer (t = 0)
- Form-factor correction for SU(2) breaking
 - Form-factor correction for long-distance EM effects

New KLOE measurement of $K_S \rightarrow \pi \ell \nu$

Talk by A. Passeri:

JHEP 02 (2023) 098

KLOE: analysis of the data sample (1.63 fb⁻¹) collected in 2004-05, measured ratio:

V_{us}/V_{ud} and $K_{\ell 2}$ decays

Talk by M. Moulson:

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_{\mathcal{K}}}{f_{\pi}} = \left(\frac{\Gamma_{\mathcal{K}_{\mu2(\gamma)}} m_{\pi^{\pm}}}{\Gamma_{\pi\mu2(\gamma)} m_{K^{\pm}}}\right)^{1/2} \frac{1 - m_{\mu}^2 / m_{\pi^{\pm}}^2}{1 - m_{\mu}^2 / m_{K^{\pm}}^2} \left(1 - \frac{1}{2} \delta_{\text{EM}} - \frac{1}{2} \delta_{SU(2)}\right)$$

Inputs from experiment:

From K^{\pm} BR fit: **BR**($K^{\pm}_{\mu^{2}(\gamma)}$) = 0.6358(11) $\tau_{K^{\pm}}$ = 12.384(15) ns

From PDG:

BR($\pi^{\pm}_{\mu^{2}(\gamma)}$) = 0.9999 $\tau_{\pi\pm}$ = 26.033(5) ns

Inputs from theory:

 $\delta_{\rm EM}$ Long-distance EM corrections

 $\frac{\boldsymbol{\delta}_{SU(2)}}{f_{K}/f_{\pi} \rightarrow f_{K\pm}/f_{\pi\pm}} Strong isospin breaking$

 $f_{\rm K} f_{\pi}$ Ratio of decay constants Cancellation of lattice-scale uncertainties from ratio NB: Most lattice results already

corrected for SU(2)-breaking: $f_{K\pm}/f_{\pi\pm}$

V_{us}/V_{ud} from lattice

Talk by F. Erben:

- Experiment very accurately determines $|V_{u\,s}/V_{u\,d}|f_{K^+}/f_{\pi^+}$ [PDG, Prog. Theor. Exp. Phys. 2022, 083C01]
- Ratio of decay constants f_{K^+}/f_{π^+} can also be accuratley determined from lattice QCD
- sub-percent precision: **isospin-breaking** and **QED effects** need to be controlled!

Final result:

with values from experiment, FLAG lattice average, and this calculation:

$$\delta R_{K\pi} = -0.0086(3)_{\rm stat.} (^{+11}_{-4})_{\rm fit}(5)_{\rm disc.} (5)_{\rm quench.} (39)_{\rm vol}$$

 $\frac{|V_{us}|}{|V_{ud}|} = \left[\frac{\Gamma(K \to \mu\nu)}{\Gamma(\pi \to \mu\nu)} \frac{m_K}{m_\pi} \frac{(m_\pi^2 - m_\mu^2)}{(m_F^2 - m_\pi^2)}\right]^{1/2} \frac{f_\pi}{f_K} \left(1 - \frac{1}{2} \delta R_{K\pi}\right)$

leading to

$$\frac{|V_{us}|}{|V_{ud}|} = 0.23154(28)_{\mathrm{exp.}} (15)_{\delta R_{K\pi}} (45)_{\delta R_{K\pi}, \mathrm{vol.}} (65)_{f_{\pi}/f_{K\pi}}$$

- our uncertainty is dominated by finite-volume error due to single lattice spacing this will improve drastically in the near future! [Matteo Di Carlo, plenary at Lattice2]
- result in agreement with only other lattice calculation [Di Carlo et al., Phys.Rev.D 100 (2019) 3, 034514]
- + $|V_{u\,s}|/|V_{u\,d}|$ uncertainty dominated by f_π/f_K lattice average

New work: Prospects for a lattice calculation of the rare decay $\Sigma^+ \rightarrow p \ell^+ \ell^-$, [F. Erben et al., JHEP 04 (2023) 108]

WG1 Summary

 $V_{cd},\,V_{cs}$, and (semi)-leptonic D decays 000000000

V_{us} and V_{us}/V_{ud} from kaons, first-row fit

Outline

V_{ud} , V_{us} , and First-Row Unitarity

$V_{cd}\text{, }V_{cs}\text{,}$ and (semi)-leptonic D decays

Charmed Hadron Lifetimes from Bellell (A. Schwartz)

 $V_{cd}, V_{cs}, \text{ and (semi)-leptonic } D$ decays 00000000

New D Form Factors from the Lattice (W. Jay)

$$\frac{1}{L} \ll M_{\pi} \ll m_h \ll \frac{1}{a}$$

W.I. Jay - MIT

New D Form Factors from the Lattice (W. Jay)

New D Form Factors from the Lattice (W. Jay)

With BESIII $D \to K/\pi \ell \nu$

 $V_{cd},\,V_{cs}$, and (semi)-leptonic D decays 0000000000

New $D_s^+ \rightarrow \ell \nu$ from BESIII (T.J. Wang)

- $\blacktriangleright~\sim 1.4\%$ precision on $|V_{cs}|$ from BESIII $D_s^+ \to \mu\nu$
- Many new measurements $D_s^+ \rightarrow \tau \nu$ in a variety of τ final states
- ▶ BESIII average determination of $|V_{cs}| = 0.9774 \pm 0.0056 \pm 0.0072$
- Sub-percent level precision, further reductions from improved D⁺_s lifetime measured at Bellell

Inclusive $c \to X \ell \nu$ (from M. Prim)

- Lepton momentum spectra extrapolated to zero-recoil based on sum-of-exclusive model
- ► In principle, access to HQE lepton energy moments

 $V_{cd}, V_{cs}, \text{ and (semi)-leptonic } D$ decays 000000000

Inclusive $c \to X \ell \nu$ (from K. Vos)

HQE for charm revisited

$$\rho = m_s^2/m_c^2$$

Fael, Mannel, KKV, hep-ph/1910.05234

$$\begin{aligned} \frac{\Gamma(D \to X_s \ell \nu)}{\Gamma_0} &= \left(1 - 8\rho - 10\rho^2\right) \mu_3 + \left(-2 - 8\rho\right) \frac{\mu_G^2}{m_c^2} + 6\frac{\tilde{\rho}_D^3}{m_c^3} \\ &+ \frac{16}{9} \frac{r_G^4}{m_c^4} + \frac{32}{9} \frac{r_E^4}{m_c^4} - \frac{34}{3} \frac{s_B^4}{m_c^4} + \frac{74}{9} \frac{s_E^4}{m_c^4} + \frac{47}{36} \frac{s_{qB}^4}{m_c^4} + \frac{\pi_0}{m_c^3} \end{aligned}$$

Key question: HQE indeed applicable to inclusive charm decays?

• My wish: Extract HQE and WA directly from q^2 moments at BESIII

Keri Vos (Maastricht)	Inclusive!	2023	28 / 30

Future Prospects on *D* leptonic/semileptonic decays

- ▶ 20 fb⁻¹ of D^+ and D^0 data from BESIII by 2024 (~ 7x current data)
- ► Exciting prospects from BellelI in *D* leptonic/semileptonic
 - ► 10000 $D_s^+ \rightarrow \mu \nu$ decays from 20 ab⁻¹, compared to 2500 from current BESIII data
- Inclusive $c \to X \ell \nu$ has strong prospects for tests of HQE

Final Summary

