WG3 – Summary

Rare B, D and K decays, radiative and penguin decays, including constraints on V_{td}/V_{ts} and ϵ'/ϵ

S. Schacht, P. Naik, M. Gorbahn, E.-H. Chao, R. Hill, M. Koval, K. Shiomi, W. Altmannshofer, A. Mauri, M. Borsato, J. Serrano / R. Tiwary, U. Egede, M. Rehoud, S. Stefkova, J. Libby / G. Mohanty, G. Fedi, M. Bauer, Z. Li, L. Leskovec, C. Bouchard

Conveners A. Juttner, C. Marin Benito, S. Sandilya, E. Stamou

18-22 SEPTEMBER 2023

Similar questions - different approaches

9 theory contributions

12 experimental contributions

P. Naik, M. Koval, K. Shiomi, A. Mauri, M. Borsato, J. Serrano / R. Tiwary, U. Egede, S. Stefkova, J. Libby / G. Mohanty, G. Fedi, Z. Li, J. Serrano

✗ no clear sign of NP

X generic TeV-scale BSM (Hierarchy Problem) under pressure

→Unclear which NP scale accessible by current experiments

[talk by Altmannshofer]

Aim for a broad experimental program

WG3 @ CKM23

B physics

 $B \to K^{(*)}\ell\ell$, R_K and LFU, LFV ($B \to \ell\tau$), $b \to s/d\gamma$ (inclusive & exclusive), $B \to K^{(*)}\nu\nu$, $\Lambda_b \to \Lambda\mu\mu$, ...

• D physics

 $D^{(*)} \rightarrow \mu\mu, D \rightarrow hh\mu\mu$ (angular analysis), $D \rightarrow h(h')ee$, $D^0 \rightarrow \pi^0 \nu \nu, \Lambda_c \rightarrow p\mu\mu, \Lambda_c \rightarrow p+$ dark-photon, large number of searches for rare/forbidden decays: LNV ($D^0 \rightarrow hhe^+e^+...$), BNV ($D^0 \rightarrow pe...$), charged-LFV ($J/\psi \rightarrow e\mu...$)

• K physics

$$K \to \pi \nu \nu, K^+ \to \pi^+ \mu \mu, K \to \mu \mu, K \to \mu \mu \mu \mu, K^+ \to \pi^0 e^+ \nu \gamma, K^+ \pi^+ \gamma \gamma, \epsilon_K$$

Cannot provide a full summary (apologies). Highlight some results and their synergies (B↔D↔K and experiment↔theory)

B physics

- $B_{s/d} \rightarrow \mu\mu$ at ATLAS/CMS/LHCb [talks by G. Fedi (exp) and M. Gorbahn (theory)]
- Tests of LFU in $b \rightarrow s\ell\ell$ after 2022 [talk by M. Borsato]
- Radiative inclusive/exclusive $b \to s\gamma$ at Belle/Belle2 [talk by J. Seranno/R. Tiwary]
- $B \rightarrow K \nu \nu$ at Belle2
 - [talk by S. Stefkova]
- → Results are important input for NP-fits and constraining the allowed patterns for deviating from SM

High-precision SMFCNC+loop, CKM, helicity suppressedwith single hadronic input f_B

► $\overline{\mathcal{B}}_{s\mu} = (3.65 \pm 0.06) \times (1.008) \times R_{t\alpha} R_s \times 10^{-9}$ [1311.0903] including QED 0.8% effect [1908.07011]

► Input
$$f_{B_s}$$
 (Lattice), CKM, $m_t^{\overline{MS}}$ and α_s :
 $R_s = \left(\frac{f_{B_s}[\text{MeV}]}{227.7}\right)^2 \left(\frac{|V_{cb}|}{0.0424}\right)^2 \left(\frac{|V_{tb}^{\star}V_{ts}/V_{cb}|}{0.980}\right)^2 \frac{\tau_H^s[\text{ps}]}{1.615}$
 $R_{t\alpha} = (m_t/(163.5 \text{ GeV}))^{3.02} (\alpha_s(M_Z)/0.1184) \alpha^{0.032}$

WG3: E. Stamou

 $B_{s/d}
ightarrow \mu \mu$

 $B_{s/d}
ightarrow \mu \mu$

[talks by G. Fedi (exp) and M. Gorbahn (theory)]

ATLAS – CMS – LHCb

Projections

¹⁰⁷ Also first measurement of $B_s \rightarrow \mu\mu\gamma$ (LHCb), effective ^{10*} lifetime, and first studies of ^{10*} $B_{s,d} \rightarrow \mu\mu\mu\mu$, $B_{s,d} \rightarrow \tau\tau$.

More is coming!

WG3: E. Stamou

[talk by M. Borsato]

LFU in $b ightarrow s\ell\ell$ / $R_K^{(*)}$

$$R_{K} = \frac{\frac{\mathcal{N}}{\varepsilon} \left(B \to K \mu \mu \right)}{\frac{\mathcal{N}}{\varepsilon} \left(B \to K e e \right)} \quad \times \left(\frac{\frac{\mathcal{N}}{\varepsilon} \left(B \to K J / \psi(e e) \right)}{\frac{\mathcal{N}}{\varepsilon} \left(B \to K J / \psi(\mu \mu) \right)} \right)$$

- Among the most involved analyses of LHCb!
- → multiple improvements in particular successfully pinned down bkg from electron misID ✓

$B ightarrow X_s \gamma$ and $B ightarrow ho \gamma$ at Belle(2)

 W^-

 $b \rightarrow s\gamma$ loop

- inclusive $B \rightarrow X_s \gamma$ difficult at LHCb
- Inclusive Belle2 measurement with 210 fb⁻¹
- Most precise measurements for exclusive mode B → ργ (Belle 711fb⁻¹ and Belle2 362fb⁻¹)

$$\begin{array}{l} B \to \rho \gamma \\ (\text{Belle+Belle2}) \\ & \mathcal{B}\left(B^+ \to \rho^+ \gamma\right) = (12.9^{+2.0+1.3}_{-1.0-1.2}) \times 10^{-7}, \\ & \mathcal{B}\left(B^0 \to \rho^0 \gamma\right) = (7.5^{+1.3+1.0}_{-1.3+1.4}) \times 10^{-7}, \\ & A_{\rm CP}\left(B^+ \to \rho^+ \gamma\right) = (-8.4^{+1.5}_{-1.3+1.4}) \%, \\ & A_{\rm I}\left(B \to \rho \gamma\right) = (11.0^{+11.2+7}_{-1.17-6.3-3.9}) \%, \end{array}$$

Uncertainty: stat. + sys. + f_{+.}/f₀₀ (for A_I)

$B^+ o K^+ u u$

WG3: E. Stamou

 $b \to s(d) \ell \ell$

Multi-disciplinary and collaborative efforts to further our understanding of data and their (in)compatibility with SM

- Form-factors from lattice: $B \to K^* \ell \ell$ [talk by L. Leskovec] and $B \to \pi \ell \ell$ and $B \to K \ell \ell$ [talk by C. Bouchard]
- Dispersive analysis of local form-factors for a controlled combination of LCSRs and lattice results [talk by M. Reboud]
- Data driven determination of charms loops [talk by A. Mauri]

$b o s(d) \ell \ell$ Form-Factors [talks by M. Reboud, L. Leskovec, C. Bouchard]

• lattice progress in and $B \to \pi$ and $B \to K$ e.g., HPQCD 2023 , first using fully relativistic b quark $\to 3 \times$ more precise at $q^2 = 0$

 $(m_{B} + m_{M})^{2} = s_{A}$

BM branch cut

 combination of LCSR (small q²) and lattice (large q²) evaluations using analyticity

 $(m_{B} - m_{M})^{2}$

→ systematically improvable approach

Region of Interest

[talk by M. Reboud]

non-local charm FFs more difficult \rightarrow data driven methods

B_s* pole

[talk by A. Mauri]

$B o K^* \mu \mu$ data-driven determination of non-local charm effects

- Perform q^2 unbinned amplitude analysis
 - model local vs non-local contributions

non-local hadronic matrix elements "charm-loop"

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ \left[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \right] \mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \left[(\mathcal{C}_{7} \pm \mathcal{C}_{7}') \mathcal{F}_{\lambda}^{T}(q^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2}) \right] \right\}$$

$$= \bot, \parallel, 0$$
Form Factors
Form

perform fit to constrain charm-loop parameters

 Global compatibility [4 d.o.f.] with SM 1.3 (1.4) σ

	$q^2 > 0$ only		
	Fit result	deviation from SM	
\mathcal{C}_9	$-0.93^{+0.53}_{-0.57}$	1.9 σ	
C_{10}	$0.48^{+0.29}_{-0.31}$	1.5σ	
C'_9	$0.48^{+0.49}_{-0.55}$	0.9σ	
\mathcal{C}_{10}'	$0.38\substack{+0.28\\-0.25}$	$1.5~\sigma$	
$q^2 < 0$ prior			
C_9	$-0.68^{+0.33}_{-0.46}$	1.8 σ	
C_{10}	$0.24^{+0.27}_{-0.28}$	0.9σ	
C'_9	$0.26^{+0.40}_{-0.48}$	0.5σ	
\mathcal{C}'_{10}	$0.27^{+0.25}_{-0.27}$	1.0σ	

[talk by A. Mauri]

$B^0 ightarrow K^* au au$ at Belle with $711 { m fb}^{-1}$

Decays	SM prediction	Best 90% CL UL
$B^0 \rightarrow \tau \tau$	(2.22±0.19) 10 ⁻⁸ [1]	1.6 10 ⁻³ [3] LHCb
$B_s \rightarrow \tau \tau$	(7.73±0.49) 10 ⁻⁷ [1]	5.2 10 ⁻³ [3] LHCb
B0 → K*0ττ	(0.98±0.10) 10 ⁻⁷ [2]	This result Belle
B+ → K+ττ	(1.20±0.12) 10 ⁻⁷ [2]	2.25 10 ⁻³ [4] Babar

- B hadronic tagging based on neural network
- · Select event with 4 remaining tracks
- Reconstruct one prong τ decays $\tau \rightarrow e/\mu/\pi$
- Signal yield obtain by fitting the extra ECL energy (clusters not associated with B_{sig} or $B_{tag})$

 $N_{
m sig} = -4.9\pm 6.0$

Background only fit with signal superimposed

Fit procedure validated on B→Dlv decays

Upper limit is set at 3.1×10^{-3} @90% C.L.

Improvements foreseen at Belle II: FEI, $\tau \rightarrow \rho$ mode, multivariate analysis. Stay tuned!

$\Lambda_b o \Lambda(1520) \mu \mu$

baryon decays sensitive to different linear combination of NP Ws

- →possible crosschecks for meson decays
- Branching fraction measurement at the end is dominated by statistical uncertainty
- Comparison to theoretical predictions are all over the place
- Some consolidation required on theory side to be conclusive

Lepton flavour violating decays [talk by J. Libby/G. Mohanty]

Search for $B_s^0 \to \ell \tau$ with the semi-leptonic tagging method at Belle JHEP 08, 178 (2023) Search for the LFV decays $B^+ \to K^+ \tau^\pm \ell^\mp$ at Belle PRL 130, 261802 (2023)

- Search for the LFV decays $B^0 \to K^{*0} \tau^{\pm} \mu^{\mp}$ JHEP 06, 143 (2023)
- Search for the LFV decays $B^0 \to K^{*0} \mu^{\pm} e^{\mp}$ and $B^0_s \to \phi \mu^{\pm} e^{\mp}$ JHEP 06, 073 (2023)

Main results

- Limits in the range of $10^{-4}\text{-}10^{-5}$ for modes with τ 's and 10^{-9} for modes with electrons and muons
- results statistically limited, Belle2 results will follow

D physics rare decays

Large number of new results

BESIII

[talk by Z. Li]

Charmonium weak decays, FCNCs, BNV, LNV, and charged LFV

LHCb

[talk by P. Naik]

Below some highlights

$D^0 o \pi^0 u u$ at BESIII with $2.93 { m fb}^{-1}$

- ✓ E_{EMC} : EMC energy not associated with π^0 and tag D decays ✓ If has signals, it will have events exceeding zero in E_{EMC}
- $\checkmark \mathcal{B}(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4} @90\% \text{ C. L.}$

✓ The first experimental results of search for $c \rightarrow uv\bar{v}$ processes New data sample with 20fb⁻¹ underway → further improvements

Lepton Number Violation

- $\mathcal{B}(D^0 \to K^- \pi^- e^+ e^+) < 2.8 \times 10^{-6}$ @90%C.L.
- $\mathcal{B}(D^+ \to K_S^0 \pi^- e^+ e^+) < 3.3 \times 10^{-6} @90\%$ C.L.
- $\mathcal{B}(D^+ \to K^- \pi^0 e^+ e^+) < 8.5 \times 10^{-6}$ @90%C.L.

Baryon Number Violation

Mode (+c.c.)	B ^{UL} @90%C.L.
$D^+ \rightarrow \overline{n}e^+$	$< 1.4 imes 10^{-5}$
$D^+ \rightarrow \overline{\Lambda} e^+$	$< 6.5 imes 10^{-7}$
$D^+ o \overline{\Sigma}{}^0 e^+$	$< 1.3 imes 10^{-6}$
$D^+ \rightarrow ne^+$	$< 2.9 imes 10^{-5}$
$D^+ \to \Lambda e^+$	$< 1.1 imes 10^{-6}$
$D^+ \rightarrow \Sigma^0 e^+$	$< 1.7 imes 10^{-6}$

Rare charm at LHCb

$D^0 o \mu \mu$	$D^{*0} \to \mu \mu$
(full Run 1+2 analysis)	(new - full Run 1+2 analysis)
$\mathcal{B}(D^0 \to \mu^+ \mu^-) < 3.1(3.5) \times 10^{-9} \text{ at } 90(95)\%$ C.L.	$\mathscr{B}(D^{*0} \rightarrow \mu^+\mu^-) < 2.6 \times 10^{-8} \text{ at } 90\% \text{ CL}$

25 searches for forbidden decays of $D^+_{(s)}$

Complementary information to BESIII

K physics rare decays

- less modes than in B/D physics due to phase-space
- among most constraining probes of NP \Rightarrow new results in precision SM predictions for $K \rightarrow \pi \nu \nu$ and $K_S \rightarrow (\mu \mu)_{\ell=0}$ [talk by M. Gorbahn]
- some modes long-distance dominated $K_L \rightarrow \mu\mu$, $K \rightarrow \pi\ell\ell$, $K \rightarrow \gamma\gamma \Rightarrow$ lattice efforts [talks by E.-H. Chao, R. Hill]
- rich ongoing and **future-planned** experimental programm with new possibilities (NA62,KOTO,LHCb,...,HIKE)

[talks by K. Shiomi, M. Koval, P. Naik, and S. Schacht]

Below some highlights

The $K ightarrow \pi u u$ golden modes in the SM

► Using 2022 PDG CKM fitter values BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) = 8.25(11)_{SD}(25)_{LD}(57)_{para.} × 10⁻¹¹, BR($K_L \rightarrow \pi^0 \nu \bar{\nu}$) = 2.83(1)_{SD}(2)_{LD}(30)_{para.} × 10⁻¹¹.

 V_{cb} dominates uncertainty: e_K has similar V_{cb} dependence

Small hadronic uncertainties in K^+ mode \rightarrow lattice in future?

WG3: E. Stamou

$K_L ightarrow \pi^0 u ar{ u}$ at KOTO

- very difficult signature, only neutrals in final state 2γ +nothing+ missing p_T
 - preliminary analysis of 2021 data

Future targets:

- 10 times more POT in next 3-4 years
- reach 10^{-10} sensitivity

$K^+ ightarrow \pi^+ u u$ and beyond at NA62

[talk by M. Koval, see also plenary by K. Massri]

NA62 Run 1 = 2016 - 2018 data: 20 signal candidates, expected background: 7.0 events [JHEP 06 (2021) 093]

 $\mathcal{B}(K^+ o \pi^+
u ar{
u})_{\sf NA62} = (10.6^{+4.0}_{-3.4}|_{\sf stat} \pm 0.9_{\sf syst}) imes 10^{-11}$

Run 2 targets 15% precision

Broad experimental program beyond $K \rightarrow \pi \nu \nu$, news:

$$\begin{array}{ll} \rightarrow & {\cal K}^+ \rightarrow \pi^+ \mu^+ \mu^- \, {\rm decay} & [{\rm JHEP} \ 11 \ (2022) \ 011] \\ \rightarrow & {\cal K}^+ \rightarrow \pi^0 {\rm e}^+ \nu \gamma \, {\rm decay} & [{\rm JHEP} \ 09 \ (2023) \ 040] \\ \rightarrow & {\cal K}^+ \rightarrow \pi^+ \gamma \gamma \, {\rm decay} & ({\rm preliminary results}) \end{array}$$

$${\cal B}({\cal K}^+ o \pi^+ \gamma \gamma) = (9.73 \pm 0.19) imes 10^{-7}$$

use such modes to extract FF information Can lattice help?

Rare Kaons on the lattice

First ideas for $K_L \rightarrow \mu \mu$

A coordinate-space based lattice-QCD formalism for the K_L → μ⁺μ[−] decay is proposed, enabling the determination of the phenomenologically inaccessible real part of the decay amplitude.

[talk by E.-H. Chao]

 $\text{Lattice for }_{\mathcal{A}_{\mu}(q^2) = \int d^4 x \langle \pi(\mathbf{p}) | \mathcal{T}[J_{\mu}(\mathbf{0}) \mathcal{H}_{\mathbf{W}}(\mathbf{x})] | \mathcal{K}(\mathbf{k}) \rangle} \pi^+ \mu \mu$

• Re-expressed using EM gauge invariance^{1 2}:

$$\begin{split} \mathcal{A}_{\mu}(q^{2}) &= -i \frac{G_{F}}{(4\pi)^{2}} \left[q^{2} \left(k + p \right)_{\mu} - \left(M_{K}^{2} - M_{\pi}^{2} \right) q_{\mu} \right] V(z) \\ q_{\mu} &= k_{\mu} - p_{\mu}, \\ z &= q^{2} / M_{K}^{2}, \\ V(z) &= a + bz + V^{\pi\pi}(z) \end{split}$$

- Goal is to compute a, b
- Simulating rare kaon decays $K \rightarrow \pi \ell^+ \ell^-$ using domain wall lattice QCD with physical light quark masses RBC-UKQCD (2023) Phys. Rev. 0.107, 114512 (2023) [#XW-2202.08776]

Demonstrated viability of method but FF not yet resolved

[talk by R. Hill]

$K ightarrow \mu \mu$

K physics at LHCb (reach SM sensitivity with Upgrade)

Can we disentangle the short-distance from the long-distance contributions?

→decompose into angular-momentum states of dimuon

 $K_S \rightarrow (\mu \mu)_{\ell=0}$ CP violating and SD dominated!

 $K_S o (\mu\mu)_{\ell=0}$ from interference in time-dependent decay

[talk by S. Schacht]

- The amplitudes that enter the decay, enter also the time-evolution
- Generic time dependence of *K* decay:

$$\left(\frac{d\Gamma}{dt}\right) \propto C_L e^{-\Gamma_L t} + C_S e^{-\Gamma_S t} + 2\left(C_{sin}\sin(\Delta mt) + C_{cos}\cos(\Delta mt)\right) e^{-\Gamma t}$$

- The 4 Cs are the observables:
 - C_L is related to K_L decay rate.
 - C_S is related to K_S decay rate.
 - *C*_{sin} and *C*_{cos} are due to interference.

$$\mathcal{B}(K_S \to (\mu^+ \mu^-)_{l=0}) = \mathcal{B}(K_L \to \mu^+ \mu^-) \times \frac{\tau_S}{\tau_L} \times \frac{C_{cos}^2 + C_{sin}^2}{C_L^2}$$

IF we could measure the interference ($C_{\rm cos},C_{\rm sin}$), we would have access to the SD physics and an independent determination of η

New Physics

Two possibilities for testable NP modes

- Heavy NP more traditional / contact interactions = higher-dim. operators
- Light NP must be very weakly interacting (QCD axion, Dark Photons, ALPS, sterile ν)

Light NP and flavour

- Precision Flavour provides valuable input to probe light NP
- One example: **ALP with single interaction** $\propto c_{WW} \frac{a}{f} \tilde{W} W$ coupling

 in general: model-depedent competition between flavour-diagonal and flavour-off-diagonal constraints
 WG3: E. Stamou

Conclusions for WG3

 Topics covered representative of the ongoing, broad research program in flavour physics

Compementarity

 $\begin{array}{l} \text{Rare decays: } B \leftrightarrow D \leftrightarrow \mathsf{K} \\ \text{Experiment} \leftrightarrow \text{Theory (SD vs LD efforts)} \\ \text{Observables: CP conserving/violating} \leftrightarrow \text{LFU} \leftrightarrow \text{LFV} \leftrightarrow \text{LNV} \leftrightarrow \text{LNV} \end{array}$

Could summarise only a small portion of all new results
 see original contributions

