WG6 SUMMARY: HIGH-P_T FLAVOUR PHYSICS

Conveners: Kai-Feng Chen (NTU), Andrea Knue (Freiburg), Michihisa Takeuchi (SYSU)

HighPT Flavor physics : Higgs, Top, New heavy particles

For CKM workshop, new CP phases required for BAU Extended Higgs/top sector, new particles required

3 theory talks

Higgs and CP violation (in BSM models) How much room is there for discoveries? Quantum information with top quarks

11 experimental talks

ATLAS, CMS on Higgs, Top, new particles

Thank you for all the contributions in WG6

Top quark events: both abundant and rare!

Top pairs produced in abundance at the LHC: 115 M events in Run 2 for ATLAS and CMS each

 \Rightarrow production via the strong interaction

Single-top production also plentiful: 40 M events per experiment

 \Rightarrow production via the electroweak interaction

Many other processes possible!

- \Rightarrow associated top-pair production like ttZ,ttW,ttH,tt+photon
- \Rightarrow associated single-top production like top+y, top+Z, tWZ, etc
- \Rightarrow production of four top quarks at the same time: only 1700 events expected per experiment!

Charm

Botton

Up

Down

CP Violation in (extended) Higgs sector by Rui Santos

Direct searches for CP-odd component in Yukawa couplings provide more than EDMs

CP Violation in (extended) Higgs sector by Rui Santos

CPV from C-violation

In 2HDM, for gauge and higgs sector P is conserved. If C is also conserved,

$$CZ_{\mu}C^{-1} = -Z_{\mu}$$
 $C(h) = C(H) = 1$ $C(G_0) = C(A) = -1$

→ Existence of interaction with odd number of C-odd particles (Z and A) is the sign of CPV A combination of 3 decays signals CP-violation

 $\begin{array}{ll} h_2 H^+ H^-; & h_3 H^+ H^-; & Z h_2 h_3 \\ \\ h_2 h_k h_k; & h_3 H^+ H^-; & Z h_2 h_3; & (k=2,3) & (2\leftrightarrow3) \\ \\ h_2 h_k h_k; & h_3 h_l h_l;; & Z h_2 h_3; & (k,l=2,3) \end{array}$

HABER, KEUS, RS, PRD 106 (2022) 9, 095038

CPV from C-violation needs at least two Higgs.

Discovering extra scalars and test their CP-numbers at the LHC is within the reach of many models (C2HDM)

PDF-EFT interplay by Maeve Madigan

Data overlap

 e.g. High-mass Drell-Yan data used to fit the SMEFT 4-fermion operators in Farina et. al 1609.08157

Injecting W' signal will modify the PDFs

Fewer constraints on the large-x antiquark PDFs allow freedom to shift away from the baseline

PDF-EFT interplay by Maeve Madigan

Simultaneous fit of PDFs and SMEFT in high mass DY

Greljo et. al 2104.02723

Including HL-LHC projections for NC and CC Drell-Yan:

Tools to investigate contaminated PDF fits in other BSM scenarios are publicly available: https://www.pbsp.org.uk/contamination/

ex) W' signal can fake WW excess etc.

Quantum Information with top quarks by Juan Ramon Munoz de Nova

Top pair $\Rightarrow 2$ qubits

General density matrix (4 × 4) for 2 qubits \rightarrow 15 parameters B_i^{\pm} , C_{ii} $\rho = \frac{1 + \sum_{i} \left(B_{i}^{+} \sigma^{i} \otimes 1 + B_{i}^{-} 1 \otimes \sigma^{i} \right) + \sum_{i,j} C_{ij} \sigma^{i} \otimes \sigma^{j}}{1 + \sum_{i} C_{ij} \sigma^{i} \otimes \sigma^{j}}$

4 hierarchical concepts for non-classical correlation

$$\rho_{\hat{\mathbf{n}}} = \frac{\tilde{\rho}_{\hat{\mathbf{n}}}}{\operatorname{Tr}\tilde{\rho}_{\hat{\mathbf{n}}}} = \frac{1 + \mathbf{B}_{\hat{\mathbf{n}}}^{+} \cdot \sigma}{2}, \quad \mathbf{B}_{\hat{\mathbf{n}}}^{+} = \frac{\mathbf{B}^{+} + \mathbf{C} \cdot \hat{\mathbf{n}}}{1 + \hat{\mathbf{n}} \cdot \mathbf{B}^{-}}$$

$$\rho = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}|$$

$$P = \int d\Omega_{A} d\Omega_{B} P(\mathbf{n}_{A}, \mathbf{n}_{B}) |\mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf{n}_{A}\mathbf{n}_{B}\rangle \langle \mathbf$$

Bell Nonlocality \subset Steering \subset Entanglement \subset Discord

H(B|A)

I(A, B) = H(A) + H(B) - H(A, B) = H(A) - H(A|B)

H(A|B)

H(A,B)

I(A,B)

Quantum Information with top quarks by Juan Ramon Munoz de Nova

$$p(\hat{\ell}_+, \hat{\ell}_-) = \frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\Omega_+ \mathrm{d}\Omega_-} = \frac{1 + \mathbf{B}^+ \cdot \hat{\ell}_+ - \mathbf{B}^- \cdot \hat{\ell}_- - \hat{\ell}_+ \cdot \mathbf{C} \cdot \hat{\ell}_-}{(4\pi)^2}$$

$$p(\hat{\ell}_{\pm}|\hat{\ell}_{\mp}=\pm\hat{\mathbf{n}}) = \frac{p(\hat{\ell}_{\pm},\hat{\ell}_{\mp}=\pm\hat{\mathbf{n}})}{p(\hat{\ell}_{\mp}=\pm\hat{\mathbf{n}})} = \frac{1\pm\mathbf{B}_{\hat{\mathbf{n}}}^{+}\cdot\hat{\ell}_{\pm}}{4\pi}$$

Actual discord → Evaluated from minimization over n̂.
 Measurement of B[±]_n → Reconstruction of t, t̄ steering ellipsoids.
 Highly-challenging measurements in conventional setups → Natural implementation in colliders!

Bell Nonlocality C Steering C Entanglement C Discord

Start with rare candidate: single top in s-channel production

- Only observed at the Tevatron so far (due to the presence of valence anti-quarks)
- Relative uncertainty:
 - ~ 40%, dominated by tt normalisation, jet-related uncertainties and parton-shower uncertainties
- Significance: 3.3 (3.9) standard deviations observed (expected)
- tW process: already observed at Run I, not discussed in detail here

M. Llácer

Bread-and-butter: single top as access to CKM

Two new measurements in t-channel:

- 5 TeV channel: probe different part of PDF
- 13 TeV: several improvements allow for 6% precision

Both analyses rely on machine-learning techniques:

- 5 TeV: strong selection cuts first, then use boosted decision tree
- 13 TeV: less stringent pre-selection, but more powerful classifier to isolate the signal

M. Llácer

Era of "Standard model top discoveries"!

- Single-top + photon process
- Cross-section only about 515 fb
- Neural network allows to isolate signal
- First observation of this process!
 - Paper: <u>arXiv:2302.01283</u>

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the Standard Model

24 MARCH, 2023 | By Naomi Dinmore

- 4-top production: cross-section only 12 fb
- Expect only 1,700 events in Run 2 per experiment
- Channel with highest precision: multilepton final states
- Observed both by ATLAS and CMS early this year!
 - CMS paper: <u>arXiv:2305.13439</u>
 - ATLAS paper: <u>Eur. Phys. J. C 83 (2023) 496</u>

B. Gonzalez

Another "heavy" final state: tWZ production

- Expected significance: 1.4 sigma
- Already limited by systematics
- Observed significance: 3.5 sigma
 - Evidence for tWZ, but signal larger than expected
- See large anti-correlation between ttZ and tWZ (right-hand figure)
- ttZ normalisation has large impact on result

- tWZ is also a rare process: cross-section = 136 fb
- But not as rare as 4-top production!
- Why have we not observed it yet?
 - Large ttZ background (green) compared to the signal (red)
 - Difficult to calculate: interference between tWZ and ttZ at NLO

M. Llácer

- Result presented here: focus on final states with 3 or 4 leptons
- Even machine-learning could not clearly separate signal and background

- Can measure W-boson polarisation in top quark decays: very high precision!
- In tt events: tops are produced unpolarised, but spins are correlated
- Single top: measure top polarisation

Charge and energy asymmetries

- gg production dominates at LHC (symmetric)
- at leading order: no charge asymmetry either
- at NLO: small charge asymmetry due to interference of ISR and FSR diagrams as well as interference between box and Born-diagrams
- In tt events: significance of 4.7 standard deviations!

Searches for flavor changing neutral currents

- FCNC in the SM: forbidden at tree-level
 - \Rightarrow Strongly suppressed in loops by GIM mechanism: BR ~ 10⁻¹⁵ 10⁻¹²
- But: many new physics models allow for FCNCs: MSSM, 2HDM, composite Higgs...
 - \Rightarrow Much larger branching ratios possible: in reach for the LHC!

ATLAS+CMS Preliminary

LHC*top*WG

June 2023

Each limit assumes that all other processes are zero 95%CL upper limits - ATLAS

[1] arXiv:2208.11415

[3] arXiv:2205.02537 (LH)

[7] arXiv:2301.11605 (LH)

[9] JHEP 07 (2017) 003

Theory predictions

from arXiv:1311.2028

51 EP.IC 82 (2022) 334 (LH)

<- CMS

-SM

MSSM RPV

*Preliminary

2HDM(FC)

[2] PRL 129 (2022) 032001

[4] CMS-PAS-TOP-21-013'

MS-PAS-TOP-17-017

[6] JHEP 02 (2017) 028

2HDM(FV

Searches for charged lepton flavor violation (prod and decay)

Channel with muons and taus:

	95% CL upper limits on BR($t \rightarrow \mu \tau q$)			
	Stat. only	All systematics		
Expected	8×10^{-7}	10×10^{-7}		
Observed	9×10^{-7}	11×10^{-7}		
	Limit reaches	s around $O(10^{-6})!$		

Operator	Lorentz Structure	
$O_{lq}^{1(ijkl)}$	$(\bar{l}_i \gamma^\mu l_j)(\bar{q}_k \gamma_\mu q_l)$	Vector
$O_{lq}^{3(ijkl)}$	$(\bar{l}_i\gamma^\mu\sigma^I l_j)(\bar{q}_k\gamma_\mu\sigma^I q_l)$	Vector
$O_{eq}^{(ijkl)}$	$(\bar{e}_i\gamma^{\mu}e_j)(\bar{q}_k\gamma_{\mu}q_l)$	Vector
$O_{lu}^{(ijkl)}$	$(\bar{l}_i\gamma^{\mu}l_j)(\bar{u}_k\gamma_{\mu}u_l)$	Vector
$O_{eu}^{(ijkl)}$	$(\bar{e}_i\gamma^{\mu}e_j)(\bar{u}_k\gamma_{\mu}u_l)$	Vector
${}^{\ddagger}O_{lequ}^{1(ijkl)}$	$(\bar{l}_i e_j) \varepsilon(\bar{q}_k u_l)$	Scalar
${}^{\dagger}O_{leav}^{3(ijkl)}$	$(\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon(\bar{q}_k \sigma_{\mu\nu} u_l)$	Tensor

Channel with electrons and muons:

20

SM Higgs: challenging corners

Pursuit with both mission possible & mission impossible!

CMS boosted H→ττ: Look for pT(H)>250 GeV 3.5σ (expt. 2.2σ) $H \rightarrow c\bar{c}$: via VH production; upper limit is still 14 or 26 times to the SM prediction.

100

CMS PRL 131 (2023) 061801, PRL 131 (2023) 041801

- Data

VH(cē)

160

140

180 200

m_{cc} [GeV]

VH(\rightarrow cc) (u=-9)

VZ(\rightarrow cc) (µ=1.16)

B-only uncertainty

- SM VH(\rightarrow cc) \times 26

VW(\rightarrow cq) (µ=0.83)

ATLAS EPJC 82 (2022) 717

ATLAS

vs = 13 TeV, 139 fb⁻¹

0+1+2 leptons

2 c-tag, All SR

GeV

250

200

150

100

50

-50

60 80

Events after B-subtraction / 10

H→ee: not accessible for SM but look for BSM effects. Limit on BF = $3.0-3.6 \times 10^{-4}$

J. Cuevas

SM Higgs: much more than rates!

Study CPV effect in Higgs sector \Rightarrow measure CP-sensitive shapes: angles, optimal observables, matrix elements, etc.

Studies based on matrix elements discriminants, scan over couplings.

0.5 1 1.5 2 2.5 3 3.5 4.5 5 $\Delta\eta_{B-B}$ Use MVA to enhance

M. Llácer

13 TeV

Pure CP-even

Pure CP-odd

the discrimination between CP states.

Purely CP-odd fermionic and bosonic Higgs couplings already excluded, but admixtures still possible

Rare productions & Rare decays

Adding more flavours! Still need much more data!

CMS PAS HIG-19-011

CMS new ttH(bb): low signal strength µ=0.33±0.26, 1.3σ (expt. 4.1σ)

CMS Preliminary			138 fb ⁻¹ (13 TeV)			
			1 1	1 1		
		μ	tot	stat	syst	
FH	Гнен	0.84	+0.49 -0.46	+0.25 -0.25	+0.42 -0.39	
SL		0.46	+0.33 -0.33	+0.21 -0.21	+0.25 -0.26	
DL	I I II	-0.23	+0.41 -0.42	+0.31 -0.31	+0.26 -0.29	
2016	HEH	0.49	+0.42 -0.40	+0.25 -0.25	+0.33 -0.32	
2017	HEH	0.32	+0.38 -0.37	+0.24 -0.24	+0.29 -0.28	
2018	HEH	0.23	+0.34 -0.34	+0.21 -0.21	+0.27 -0.27	
Combined	HEN	0.33	+0.26 -0.26	+0.17 -0.16	+0.21 -0.21	
	0	5			10	
But agree with ATLAS: $\hat{\mu} = \hat{\sigma}/\sigma_{SM}$						
µ=0.35 +0.36/-0.34			JHEP 06 (2022) 97			

J. Cuevas

Searches for LFV Higgs, no hint so far / agree with SM-only: ATLAS BF(H \rightarrow et) < 0.20%, BF(H \rightarrow µt) < 0.18%, BF(H \rightarrow eµ) < 6.2 × 10⁻⁵, CMS BF(H \rightarrow et) < 0.22%, BF(H \rightarrow µt) < 0.15%, BF(H \rightarrow eµ) < 4.4 × 10⁻⁵.

ATLAS, JHEP 07 (2023) 166, PLB 801 (2020) 135148 CMS, PRD 104 (2021) 032013, arXiv:2305.18106 ...but wait!

Extend the mass window?

If go beyond H(125)... CMS 138 fb⁻¹ (13 TeV) GeV CMS 138 fb⁻¹ (13 TeV) eμ) [fb] Data events / S+B fit 95% CL limits X→eµ ---- B component Observed ±2 σ Expected ± 1o × Expected $\pm 2\sigma$ S/(S+B) on σ(pp 100 CL limit B component subtracted 95% m_x [GeV] meu [GeV] CMS see an excess of $H \rightarrow e\mu$ at 146 GeV,

 3.8σ local (2.8 σ glocal)

➔ ATLAS did not scan different masses yet!

CMS arXiv:2305.18106

Also low mass diphoton?

J. Cuevas & J. Tao & R. Les

→ Not the only excess!

Heavy resonances to bosons

Straightforward prob to INP

- Look for VV/Vh/hh (or even more bosons!) final state, interpreted with Randall-Sundrum radion / Georgi-Machacek / Heavy vector triplet / RS graviton.
 Including boosted boson reconstruction (a.k.a. jet substructure), with advanced ML
- tech. 138 fb⁻¹ (13 TeV) +bbbb) [fb ATLAS ATLAS-CONF-2021-052 √s = 13 TeV, 139 fb⁻¹ Expected [dd] (HV+VV CMS ZH→Zhh Expected ±1\sigma Also vy resonance, xpected + 1 std. deviation Expected ±20 Local *p*₀-value o(ZH)×B(H→hh Expected ± 2 std. deviation ATLAS EPJC 83 (2023) 519 mentioned earlier! $x B(V' \rightarrow VV+VH) HVT_$ VV - Λ 10⁻² Λ ΛΟ)*θ* 10 limit on hh Vhh 10 × bbbb ч ATLAS Preliminary ь - hht+t-95% 300 400 500 600 900 100 $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^-$ 10 R. Les bbyy 10-4 Spin-0 CMS PLB 844 (2023) 137813 m_u [GeV] Combined 2 2.5 3 3.5 5.5 6 45 5 3000 200 300 500 2000 1000 ATLAS Vhh \rightarrow qqqqq/ ℓ \vee qqqq My [TeV] m_x [GeV] Excess in ZH: 2.7σ local (1.4 σ global) at 550 GeV CMS VV/Vh \rightarrow qqqq/qqbb ATLAS hh→bbbb/bbtt/bbyy Excess in AZH: as a generic search Excess in combined analysis: Large wid. 3.8σ local (3.0σ global) at H(320)/A(420) Mild excess 2.3σ at 2.1/2.9 TeV 3.2σ local (2.1 σ global) at 1.1 TeV Narrow wid. 3.6σ local (1.4 σ global) at H(300)/A(800)

Mass limit 4-5 TeV but several excesses exist - wait for further examination!

 $V/h/\gamma$

 $V/h/\gamma$

X

Vector-like quarks

ATLAS arXiv:2212.05263

- Mandatory to look for more quarks (T/B/X/Y) too!
- **Pair** (model indep. prod) & single (good for heavier) productions.
- Decaying to **qW** or **qZ** or **qH**.

- Classification by final state objects;
- Exploit "mixed" final states too!

CMS arXiv:2308.07826

1600 1800

Leptoquark mass [GeV]

2000

1000 1200 1400

10-3

10-4 600

2000

2500 ST [GeV]

800

Heavy neutrinos

- Motivated by seesaw mechanism and other BSM, extend SM to include heavy neutrinos.
- Could be **long-lived**; can fix flavours.
 - Could overlain hervogenesis, DM, g-2, MINLs in W decays with a

≥910³

ഹ പ്10²

10 ⊨

10⁻¹

 10^{-2}

0 5 10

Events

ATLAS

Majorana neutrinos in same-sign WW scattering

... and many many others!

Many experimental signatures examined:

VBF, displaced vertices, displaced jet taggers, resolved/boosted jets. etc.

Still plenty of phase-space to be explored, e.g. 3rd generation, flavour mixing, larger displacement...

Summary of direct searches

Limits depends on model assumptions & analyses.

1 TeV

- High p_T studies do have strong impacts to CKM:
 - Direct & indirect probe of the BSM.
 - Complementary to low energy measurements overconstrain the CKM picture!
- LHC experiments provide numerous inputs to the community:
 - Top itself plays a key role in flavor physics & Higgs physics!
 - CKM interpretation from single-top t-channel;
 - Precision measurements of top & Higgs as backbone of SM.
 - Indirect probe of NP at very high scale via FCNC and anomalous couplings.
 - Many direct searches of new bosons, new quarks, new leptons...

Interesting excess here and there \Rightarrow to be verified with Run-3 and future HL-LHC runs!

BACKUP SLIDES

