Summary of WG4: Mixing and mixing-related CP violation in B system: Δm , $\Delta \Gamma$, ϕ_s , ϕ_1/β , ϕ_2/α , ϕ_3/γ

Vladyslav Shtabovenko¹, Agnieszka Dziurda², Thibaud Humair³

¹Center for Particle Physics Siegen, University of Siegen, ²Henryk Niewodniczanski Institute of Nuclear Physics PAS, Cracow ³DESY, Hamburg

> 12th International Workshop on the CKM Unitarity Triangle

Santiago de Compostela, Spain 22nd of September 2023

2 B-meson mixing

3 CP violation and mixing angles

4 Summary and Outlook

Introduction

• $B_s^0 - \bar{B}_s^0$ oscillations between flavor eigenstates $|B_s^0\rangle$ and $|\bar{B}_s^0\rangle$

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix},$$

$$\hat{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}, \quad \hat{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$$

Diagonalize the matrices

$$\begin{aligned} |B_{s,L}\rangle &= p |B_s^0\rangle + q |\bar{B}_s^0\rangle \\ |B_{s,H}\rangle &= p |B_s^0\rangle - q |\bar{B}_s^0\rangle \end{aligned}$$

Mass eigenstates: <a>|B_{s,L} (lighter) and
 |B_{s,H}
 (heavier)

- Physical observables depend on: $|M_{12}|$, $|\Gamma_{12}|$, ϕ_s

• $\Delta m_s: B^0_s - ar{B}^0_s$ oscillation frequency

$$\Delta M_s = M_H - M_L \approx 2|M_{12}|$$

 $t~{\rm quark}$ is dominant in SM, sensitivity to NP in the loops

•
$$\Delta\Gamma_s:B^0_s-ar{B}^0_s$$
 width difference

$$\Delta\Gamma_s = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos\phi_s$$

only \boldsymbol{u} and \boldsymbol{c} contribute, precision probe of SM, little room for NP

• ϕ_s : CP-asymmetry in the mixing

$$a_{\rm fs} = {\rm Im}\left(\frac{\Gamma_{12}}{M_{12}}\right) = \left|\frac{\Gamma_{12}}{M_{12}}\right|\sin\phi_s$$

In this talk: constraints SM by studying the time-evolution of $B^0_{(s)}$ - $\bar{B}^0_{(s)}$:

- Recent LHCb & Belle II measurements of mixing-induced CPV in penguin decays
- ${m {\circ}}$ Theory progress in understanding perturbative and nonperturbative aspects of B-mixing
- $m{ extsf{ heta}}$ Theory determinations of γ and ϕ_s

B-meson mixing

B-meson mixing

Numerical results

$\Delta\Gamma$ to NNLO (Gerlach, Nierste, Shtabovenko, Steinhauser 2022)

$$\frac{\Delta\Gamma_s}{\Delta M_s}\Big|_{\text{nole}} = \left(3.79 \,{}^{+0.53}_{-0.58_{\text{scale}} - 0.19_{\text{scale},1/m_b}} \pm 0.11_{B\tilde{B}_S} \pm 0.78_{1/m_b} \pm 0.05_{\text{input}}\right) \times 10^{-3},\tag{33}$$

$$\frac{\Delta\Gamma_s}{\Delta M_s}\Big|_{\overline{\text{MS}}} = \left(4.33 \stackrel{+0.23}{_{-0.44_{\text{scale}} - 0.19_{\text{scale},1/m_b}}} \pm 0.12_{B\tilde{B}_S} \pm 0.78_{1/m_b} \pm 0.05_{\text{input}}\right) \times 10^{-3}, \tag{34}$$

$$\frac{\Delta\Gamma_s}{\Delta M_s}\Big|_{\mathsf{PS}} = \left(4.20 \, {}^{+0.36}_{-0.39_{\mathsf{scale}}} \, {}^{+0.09}_{-0.19_{\mathsf{scale}},1/m_b} \pm 0.12_{B\tilde{B}_S} \pm 0.78_{1/m_b} \pm 0.05_{\mathsf{input}}\right) \times 10^{-3}. \tag{35}$$

Overall result:

$$\Delta\Gamma^{th} = (0.076 \pm 0.017) \,\mathrm{ps}^{-1} \tag{36}$$

Source: NNLO QCD corrections to $\Delta\Gamma_{(s)}$ in the $B_{(s)} - \bar{B}_{(s)}$ system by **Pascal Reeck**

B-meson mixing

Source: NNLO QCD corrections to $\Delta\Gamma_{(s)}$ in the $B_{(s)} - \bar{B}_{(s)}$ system by **Pascal Reeck**

Outlook

Pascal Reeck

Contribution	(Gerlach, Nierste, Shtabovenko, Steinhauser 2022)	WIP (Chen, Nierste, Reeck, Shtabovenko, Steinhauser)	
$P_{1,2} \times P_{3-6}$	2 loops, $\mathcal{O}(z)$	3 loops, $\mathcal{O}(z^{10})$	
$P_{1,2} \times P_8$	2 loops, $\mathcal{O}(z)$	3 loops, $\mathcal{O}(z^{10})$	
$P_{3-6} \times P_{3-6}$	2 loops, $\mathcal{O}(z)$	3 loops, $\mathcal{O}(z^{10})$	
$P_{3-6} \times P_8$	2 loops, $\mathcal{O}(z)$	3 loops, $\mathcal{O}(z^{10})$	
$P_8 \times P_8$	2 loops, $\mathcal{O}(z)$	3 loops, $\mathcal{O}(z^{10})$	
$P_{1,2} \times P_{1,2}$	3 loops, $\mathcal{O}(z)$	3 loops, $\mathcal{O}(z^{10})$	

Source: NNLO QCD corrections to $\Delta\Gamma_{(s)}$ in the $B_{(s)}-\bar{B}_{(s)}$ system by Pascal Reeck

B-meson mixing

MIXING RATIOS ξ ,

- update of RBC/UKQCD work [Boyle et al., arxiv 1812.08791]
- includes JLQCD ensembles
- completely new, fully correlated fitting strategy
- cancellation of
 renormalisation constants
- relatively flat $1/m_{sh}$ dependence with improved reach towards m_{b}^{phys}
- we are currently investigating various global fits on the data

15/22

Source: Update on SU(3)-breaking ratios and bag parameters for $B_{(s)}$ mesons by **Felix Erben**

B-meson mixing

BAG PARAMETER \mathcal{B}_{hs} - All 5 operators

- heavy-strange bag parameters, renormalised at mass scale µ
- O₁, O₂: mild a² dependence
- O₃, O₄: strong a² dependence
- + O₅: medium a^2 dependence and curvature in $1/m_{sh}$
- very similar for heavy-light sector

20/22

Source: Update on SU(3)-breaking ratios and bag parameters for $B_{(s)}$ mesons by Felix Erben

$B^0 o J/\psi K^+ K^-$ at CMS $\,$ Alberto Bragagnolo

CMS performed time-dependent analysis of $B^0 \to J/\psi (\nu^+ \mu^-) K^+ K^-$ using:

- 2017-2018 data ($L = 96 \text{ fb}^{-1}$)
 - $\Rightarrow 48500 \pm 250$ signal candidates
- 🥑 Opposit-side muon tag

 \Rightarrow improvement in Run 3 using SS, electron, & jet-tagging

First measurement of Δm_s at CMS:

$$\Delta m_s = 17.51^{+0.10}_{0.09} \pm 0.03 \text{ ps}^{-1}$$

Measurement of ϕ_s and $\Delta\Gamma_s$ combined with previous analysis at 8 TeV:

 $\phi_s = 0.021 \pm 0.044 \pm 0.010$ rad $\Delta\Gamma_s = 0.1032 \pm 0.0095 \pm 0.0048$ ps⁻¹

- Compatible with SM expectation
- no evidence for CPV

13

$B^0 o J/\psi K^+ K^-$ at LHCb $\,\,$ Melissa Cruz Torres

LHCb recently updated time-dependent analysis of $B^0 \to J/\psi (\mu^+\mu^-) K^+ K^-$ using:

- 🥑 Full Run 2 dataset
 - $\Rightarrow \sim 349000~{\rm signal}~{\rm candidates}$
- Combination of various OS and SS taggers tagging efficiency comparable as Run 1

Result:

•
$$\phi_s = -0.039 \pm 0.022 \pm 0.006$$
 rad • $\Gamma_s - \Gamma_d = -0.0056^{+0.0013}_{-0.0015} \pm 0.0014$

• $|\lambda| = 1.001 \pm 0.011 \pm 0.005$ • $\Delta \Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024$

Combined with Run 1 data:

 $\phi_s = -0.044 \pm 0.020$ rad $|\lambda| = 0.990 \pm 0.010$

ϕ_s , Γ_s , $\Delta\Gamma_s$: state of the art

State of the art (w. latest preliminary results from LHCb)

- Measurement statistically limited → long-term commitment by multiple experimental collaborations
- Very active theoretical community (NP limits, penguin pollutions, predictions, ...)
- Precision on ϕ_s close to 3 s.d. sensitivity for CPV in decay/mixing interference

 \circ σ^{WA}($φ_s$) ≈ 15 mrad (40% relative uncertainty)

Source: Measurement of the CP-violating phase ϕ_s with CMS: present and future by Alberto Bragagnolo

CP violation measurements in the penguin-mediated decay $B_s^0 \rightarrow \phi \phi$

Measured observables in the polarization-independent fit

arX	iv:2304	1.06198	
-----	---------	---------	--

Parameter	Result
$\phi_s^{s\bar{s}s}$ [rad]	$-0.042\pm0.075\pm0.009$
$ \lambda $	$1.004 \pm 0.030 \pm 0.009$
$ A_0 ^2$	$0.384 \pm 0.007 \pm 0.003$
$ A_{\perp} ^2$	$0.310 \pm 0.006 \pm 0.003$
$\delta_{\parallel} - \delta_0 \text{ [rad]}$	$2.463 \pm 0.029 \pm 0.009$
$\delta_{\perp} - \delta_0 \text{ [rad]}$	$2.769 \pm 0.105 \pm 0.011$

The following parameters have been constrained to the measurements by LHCb collaboration

 $\Delta m_s = 17.766 \pm 0.006 \text{ ps}^{-1}$

 $\Gamma_s = 0.657 \pm 0.002 \text{ ps}^{-1}$

 $\Delta\Gamma_s = 0.078 \pm 0.006$ ps⁻¹ with correlation coefficient of -0.35

In combination with LHCb Run 1 measurements

 $\phi^{s\bar{s}s} = -0.074 \pm 0.069$ rad and $|\lambda| = 1.009 \pm 0.07 \pm 0.030$

arXiv:2304.06198

This is the most precise measurement of CP violation in $B^0_s o \phi \phi$ to date

17

Source: Measurement of the CP violating phase ϕ_s and $\phi_s^{sq\bar{q}}$ by Melissa Cruz Torres (LHCb)

$B^0_s o J\psi\eta'$, $B^0_s o J\psi\pi^+\pi^-$ at LHCb ($\Delta\Gamma_s$)

Source: Measurement of the CP violating phase ϕ_s and $\phi_s^{sq\bar{q}}$ by Melissa Cruz Torres (LHCb)

CKM-angle γ from non-tree decays

Fleischer [1999,2007]; Fleischer, Knegjens [2011]; Fleischer, Malami, Jaarsma, KKV [2016] Cuichini, Franco, Mishima, Silvestrini [2012], Data from LHCb [2022]Fleischer, Jaarsma, KKV [2211.08346]

- New! First observation of CP violation in penguin dominated $B_s \rightarrow K^+ K^-$ LHCb 2022
- New! First determination of γ with only CP asymmetries
- $\gamma = (65^{+7}_{-5})^\circ$ Fleischer, Jaarsma, KKV [2111.08346]
- Agrees with tree determinations: $\gamma = (64.9 \pm 4.5)^\circ$ LHCb [2021] without $_{B_s}$ modes
- Limited by U-spin breaking corrections

Keri Vos (Maastricht)				Beautiful Puzzles						20.09.2023	9 /	20				
_								_					 			

Source: Theory determination of γ and ϕ_s from $B_{(s)} \to hh$ decays by Keri Vos

Determination of ϕ_s (II)

Fleischer, Jaarsma, KKV, JHEP 02 (2023) 081 [2211.08346]

Strategy II:

- Use ratio of branching ratios of $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ decays $K = 105.3 \pm 9.6$
- Non-factorisable U-spin-breaking contributions:

$$\xi_{\rm NF}^{a} \equiv \left|\frac{1+r_{\rm P}}{1+r_{\rm P}'}\right| \left|\frac{1+x}{1+x'}\right| \left|\frac{a_{\rm NF}^{T}}{a_{\rm NF}^{T'}}\right| = 1.00 \pm 0.07,$$

- $\Delta \phi_{KK} = -(4.5 \pm 5.3)^{\circ}$
- With $\phi_s^{\mathrm{eff}} = -(8.1 \pm 1.9)^\circ \rightarrow \phi_s = -(3.6 \pm 5.7)^\circ$

Remarkable agreement with $B_s^0
ightarrow J/\psi \phi$ determination: $\phi_s = -(4.2\pm1.4)^\circ$

	Keri Vos (Maastricht)	Beautiful Puzzles	20.09.2023	18 / 20
Sourc	e: Theory determination of γ	ϕ and ϕ_s from $B_{(s)} ightarrow hh$ decays by Keri Vos		

$\sin 2eta^{\mathsf{eff}}/\phi_1^{\mathsf{eff}}$: Belle II summer 23 results Vuma Uematsu

 $B^0
ightarrow K^0_S \pi^0 \gamma$

Radiative penguin, fully neutral final state
 Most precise result to date:

$$\begin{split} S &= 0.00^{+0.27}_{-0.26} \pm 0.03 \\ C &= 0.10 \pm 0.13 \pm 0.03 \end{split}$$

in ${K^{\ast}}^0$ resonance region

 $B^0 o \eta' K^0_S$

- ${\ensuremath{ \bullet}}$ Most abundant b
 ightarrow s had. penguin
- Precision approaching world best:

 $S = 0.67 \pm 0.10 \pm 0.04$ $C = -0.19 \pm 0.08 \pm 0.03$

Precision of TD analyses will increase w/ new flavor tagger: $\sim 37\%$ eff vs $\sim 29\%$ at Belle.

$\sin(2\beta)$ at LHCb

Mode	S	С	ρ	
$J/\psi(\rightarrow \mu^+\mu^-) K_S^0$	$0.716 \pm 0.015 \pm 0.007$	$+0.010\pm 0.014\pm 0.003$	0.446	
$\psi(2S)(\to \mu^+\mu^-)K^0_S$	$0.649 \pm 0.053 \pm 0.018$	$-0.087 \pm 0.048 \pm 0.005$	0.503	
$J/\psi(\rightarrow e^+e^-) K_S^0$	$0.754 \pm 0.037 \pm 0.008$	$+0.042\pm 0.034\pm 0.008$	0.374	

~306k signal decays ~23k signal decays ~43k signal decays

Source: Measurements of $\sin(2\beta)$ at LHCb by Thomas Latham - LHCb-PAPER-2023-013

Combination with Run 1

- Combination with the previous Run 1 results
 - Assumes sources of systematic uncertainties from external parameters Δm_d , $\Delta \Gamma_d$, A_P are fully correlated

$$S_{\psi K_S^0} = 0.724 \pm 0.014$$

$$C_{\psi K_S^0} = 0.004 \pm 0.012$$

 $\rho = 0.40$

18/09/2023

 $\sin(2\beta)$ at L<u>HCb</u>

Measurements of sin(2) at LHCb

21

Source: Measurements of $\sin(2\beta)$ at LHCb by Thomas Latham

 γ/ϕ_3 at LHCb

$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$ - Run2

[4] LHCb-CONF-2023-004

▶ 20950 ± 180 candidates

Source: Decay-time-dependent measurements of the CKM angle γ at LHCb by Quentin Führing

γ/ϕ_3 at LHCb

- Extraction of physics parameters
 - External input [9]

 $-2\beta_s = \phi_s = (-0.031 \pm 0.018)$ rad

Run2 standalone result:

$$\gamma = (74 \pm 11)^{\circ}$$

$$\delta = (346.9 \pm 6.6)^{\circ}$$
 $r_{D,K} = 0.327 \pm 0.038$

- Compatibility to Run1^[2] at 1.3 σ
 - Driven by γ at 2σ and Re[λ_f]
 - $r_{D,K}$ and δ at 0.6 σ each
- Updated machinery reproduces Run1 result [2]
- Combination in preparation

[4] LHCb-CONF-2023-004

Source: Decay-time-dependent measurements of the CKM angle γ at LHCb by Quentin Führing

Comparison between Scenarios I and II for \varkappa_q and σ_q

Source: New Physics in $B_q - \bar{B}_q$ mixing in connection with CKM angle γ by Eleftheria Malami

VS, AD, TH (CKM 2023) / WG4, 22.09.2023

Summary and Outlook

Summary and Outlook

Summary

- Many exciting new experimental results utilizing large datasets
- Increased precision due to higher statistics
- Theory doing its best to keep up