CP violation measurements in three-body charmless B decays

Lucas Falcão

on behalf of the LHCb Collaboration

B

CKM 2023 12th INTERNATIONAL WORKSHOP ON THE CKM UNITARITY TRIANGLE KOBAYASHI MASKAWA CABIBBO

SANTIAGO DE COMPOSTELA 18-22 SEPTEMBER 2023

LHCb detector: Ş

Single-arm spectrometer with high-precision of tracking, particle identification and decay vertex system

Presentation based on RUN II data of LHCb: Ş $\mathcal{I} = 5.9 fb^{-1}$ using p - p collisions and centre-of-mass energy of 13 TeV (2015 - 2018)

Papers to be presented: \mathbf{M} Direct CP violation in charmless three-body decays of B^{\pm} mesons <u>PRD.108.012008(2023)</u> \mathbf{M} Search for direct CP violation in charged charmless $B \rightarrow PV$ decays <u>PRD.108.012013(2023)</u>

Introduction

during the RUN I Measurements of CP violation in three-body phase space of charmless B^{\pm} decays \mathcal{M} Amplitude analysis of $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$ and B^{\pm}

Technical elements Selection based on Multivariate, PID and charm vetoes Efficiency obtained from Monte Carlo simulation samples

For the Analysis is motivated by significant asymmetries observed in $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}(h = K, \pi)$

PhysRevD.90.112004

$$B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$$
 decays

PhysRevLett.124.031801(2020)

PhysRevLett.123.231802(2019)

PhysRevD101012006(2020)

$$\rightarrow (V \rightarrow h^+ h^-) h^{\pm} \text{ contributions:} B^{\pm} \rightarrow (\rho (770)^0 \rightarrow \pi^+ \pi^-) \pi^{\pm} B^{\pm} \rightarrow (\rho (770)^0 \rightarrow \pi^+ \pi^-) K^{\pm} B^{\pm} \rightarrow (K^* (892)^0 \rightarrow K^+ \pi^-) \pi^{\pm} B^{\pm} \rightarrow (K^* (892)^0 \rightarrow K^+ \pi^-) K^{\pm} B^{\pm} \rightarrow (\phi (1020) \rightarrow K^+ K^-) K^{\pm}$$

Theory Overview

- Direct CPV arises from the interference between amplitudes with different weak and strong Ş phases leading to the same final state:
 - Strong phase: short-distance penguin contributions, hadronic final-state-interactions(FSI) Weak phase: CKM matrix elements
- Example of at least 2 competitive amplitudes: Ş

$$A(B \to f) = |A_1| e^{i(\delta_1 + \gamma_1)} + |A_2| e^{i(\delta_2 + \gamma_2)}$$

$$A(\bar{B} \to \bar{f}) = |A_1| e^{i(\delta_1 - \gamma_1)} + |A_2| e^{i(\delta_2 - \gamma_2)}$$

$$A_{CP} = \frac{|A(B \to f)|^2 - |A(\bar{B} \to \bar{f})|^2}{|A(B \to f)|^2 + |A(\bar{B} \to \bar{f})|^2}$$

 $2|A_2/A_1|sin(\delta_1 - \delta_2)sin(\gamma_1 - \gamma_2)$ $1 + |A_2/A_1|^2 |+ |A_2/A_1| \cos(\delta_1 - \delta_2) \cos(\gamma_1 - \gamma_2)$

CP violation measurements in three-body charmless **B** decays

Lucas Falcão

Theory Overview

CPV coming from the interferences between: <u>PhysRevD.92.054010</u> **Markov** Penguin and Tree diagrams **Mathematical Resonances in the phase space**

Lucas Falcão

Rescattering $\pi\pi \leftrightarrow KK$

CP violation measurements in three-body charmless **B** decays

Hadronic Rescattering

CPT constraints on CP Violation Ş

 \square CP violation: $\Gamma(P \rightarrow f) - \Gamma(\bar{P} - \bar{f}) \neq 0$ \mathcal{M} CPT symmetry: total decay widths of P and \overline{P} are the same $\Gamma(P \to f_1) + \ldots + \Gamma(P \to f_n) = \Gamma(\bar{P} \to \bar{f_1}) + \ldots + \Gamma(\bar{P} \to \bar{f_n})$

"Communication" between the different decay modes with the same flavor quantum numbers

 \mathbf{V} Ex: $B^{\pm} \rightarrow \pi^{\pm} K^+ K^-$ and $B^{\pm} \rightarrow \pi^{\pm} \pi^+ \pi^-$ CPV with opposite signs in partner channels

Final-state-interactions:

Provides the strong phases for CP violation to be observed. It is a key ingredient to preserve CPT symmetry

Lucas Falcão

CP violation measurements in three-body charmless **B** decays

$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ — The Dalitz Plot

Lucas Falcão

Why is three-body decays particularly interesting? All final states have rich resonant structure Additional source of strong phase difference Large effects in regions of the Dalitz Plot may arise

spin=1

Overlap between vector and scalar resonances

- Two degrees of freedom
- Phase-space graphical representation of the spinless decay

$$\int d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} \left| \mathcal{M} \right|^2 \mathrm{d}m$$

The total decay amplitude squared holds information regarding the **dynamics**

Direct CP violation in charmless three-body decays of B^{\pm} mesons

CP violation measurements in three-body charmless **B** decays

$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ — Mass fit results

Invariant mass fit

- Signal PDF:
 Gaussian + two Crystal Balls functions
- Background:
 - Combinatorial: exponential function
 - Partially reconstructed background:
 Argus function convolved with a
 Gaussian
 - **M** Peaking from other $B \rightarrow hhh$ decays: Two Crystal Balls functions

Fit observables Signal yield Raw asymmetry $A_{raw} = \frac{N^{-} - N^{+}}{N^{-} + N^{+}}$

Lucas Falcão

Decay mode	Total yield	$A_{ m raw}$	
$B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-$	499200 ± 900	$+0.006 \pm 0.002$	
$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	365000 ± 1000	-0.052 ± 0.002	
$B^{\pm} ightarrow \pi^{\pm}\pi^{+}\pi^{-}$	101000 ± 500	$+0.090 \pm 0.004$	
$B^{\pm} ightarrow \pi^{\pm} K^+ K^-$	32470 ± 300	-0.132 ± 0.007	

CP asymmetry

The efficiency-corrected raw asymmetry:

The production asymmetry Ş

$$A_P = A(B^{\pm} \to J/\psi K^{\pm})_{data} - A(B^{\pm} \to J/\psi K^{\pm})_{PDG}$$

Used as control channel once CPV is not expected to appear

 <i>acc</i>_i': acceptance for the event <i>i</i> <i>e</i>[±]: efficiency weights <i>R</i>: efficiency correction factor <i>A</i>^{corr}_{raw}: efficiency-corrected raw asymmetries 1 + A_P + w - R + A_P + w · R 			
$A corr _ 1 + A_{RAW} - K + A_{RAW} \cdot K$			
$A_{raw} = \frac{1}{1 + A_{RAW} + R - A_{RAW}}$			

The physical CP asymmetry:

Phase space integrated asymmetries

$$A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}) = +0.0$$

$$A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-}) = -0.1$$

$$A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}) = +0.0$$

$$A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = -0.1$$

CP violation measurements in three-body charmless B decays

Lucas Falcão

First observation of CPV in $B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$, $R^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

Run I results

- $025 \pm 0.004 \pm 0.004 \pm 0.007 \quad \longleftarrow 2.8\sigma$
- $.036 \pm 0.004 \pm 0.002 \pm 0.007 \quad \longleftarrow \quad 4.3\sigma$
- $58 \pm 0.008 \pm 0.009 \pm 0.007 \quad --- 4.2\sigma$
- $123 \pm 0.017 \pm 0.012 \pm 0.007 \quad \longleftarrow 5.6\sigma$

Visualization of localized asymmetries

Histogram created by an adaptive binning algorithm The asymmetry is calculated from the number of events in the bin Localized asymmetry within the range -80% - +80%

Miranda method

Lucas Falcão

No direct CPV expected in $\chi_{c0}(1P)$ in SM Phys. Rev. Lett. 74 4984(1995) Run2 amplitude analysis will provide further details

Lucas Falcão

Asymmetry in bins of phase space A_{raw}^{N} $m^2(\pi^+\pi^-)_{\rm high}$ [GeV²/ c^4 LHCb 25 5.9 fb⁻¹ 0.4 20 E 0.2 15 10 F -0.2 -0.4 5 -0.6 0 -0.8 $m^2(\pi^+\pi^-)_{low}^{10} [\text{GeV}^2/c^4]$ 15 0 5

Large **CPV** observed

Fit Fraction of 16%

Lucas Falcão

Asymmetry in bins of phase space

CP violation measurements in three-body charmless **B** decays

Lucas Falcão

Search for direct CPV in $B \rightarrow PV$

CP violation measurements in three-body charmless B decays

17

CKM2023

B^{\pm} decays into a vector + scalar resonance

Motivated by: Ş

Great interest involving the CPV in quasi-two-body decays <u>Nucl.Phys.B675(2003)</u> Contribution of short- and long-distance to strong phase This method does not require a full amplitude analyses

Features of three-body B decays: Ş **V** Large phase-space Optimized of scalars and vectors resonances with low mass Signature of the resonances in the phase-space

First time this method is used with data PhysRevD.94.054028 Method validated with Monte Carlo Simulation

Model independent method

Select a central mass slice of a vector involving interference with a single scalar

B^{\pm} decays into a vector + scalar resonance

The decay amplitudes can be represented by: <u>PhysRevD.94.054028</u> Ş

$$\mathscr{M}_{\pm} = a_{\pm}^{V} e^{i\delta_{\pm}^{V}} F_{V}^{BW} c$$

The matrix element squared is: Ş

Lucas Falcão

Direct vector A_{CP} **Direct scalar** A_{CP} $|\mathcal{M}_{\pm}|^2 = (a_{\pm}^V)^2 (\cos\theta)^2 |F_V^{\rm BW}|^2 + (a_{\pm}^S)^2 |F_S^{\rm BW}|^2$ $+ 2a_{\pm}^{V}a_{\pm}^{S}\cos\theta|F_{V}^{BW}|^{2}|F_{S}^{BW}|^{2} \times \{\cos(\delta_{\pm}^{V}-\delta_{\pm}^{S})[(m + 2a_{\pm}^{V})^{2}]$ $+\sin(\delta^V_+-\delta^S_+)[(m_S]]$

Scalar and vector interference

 $\cos\theta(s_{\perp}, s_{\parallel}) + a_{\pm}^{NR} e^{i\delta_{\pm}^{NR}} F_{NR}^{BW}$

Assumptions of S_{\perp} $(p_{h^{-}})^{*}$ $(p_{h^{\pm}})^2$

$$a_{\pm}^{V}$$
 and a_{\pm}^{S} independent

$$s_{\parallel} = (p_{h^+} +$$

$$s_{\perp} = (p_{h_b} +$$

$$m_V^2 - s_{\parallel})(m_S^2 - s_{\parallel}) + (m_V \Gamma_V)(m_S \Gamma_S)]$$

$$\Gamma_S)(m_V^2 - s_{\parallel}) - (m_V \Gamma_V)(m_S^2 - s_{\parallel})]\},$$

B^{\pm} decays into a vector + scalar resonance

 \checkmark Asymmetry \propto amplitude square:

Scalar and vector
Direct scalar
$$A_{CP}$$
 Direct
 $|\mathcal{M}_{\pm}|^2 = p_0^{\pm} + p_1^{\pm}cos\theta(m_V^2, s_{\perp}) + p_2^{\pm}cos^2\theta$

Quadratic function to get amplitude parameters: $\mathbf{M} f(x) = p_0 + p_1 x + p_2 x^2$

$$A_{CP}^{V} = \frac{|\mathcal{M}_{-}|^{2} - |\mathcal{M}_{+}|^{2}}{|\mathcal{M}_{-}|^{2} + |\mathcal{M}_{+}|^{2}} = \frac{p_{2}^{-} - p_{2}^{+}}{p_{2}^{-} + p_{2}^{+}}$$

Lucas Falcão

 $B^{\pm} \rightarrow (V \rightarrow h^{+}h^{-})h^{\pm}$ contributions: $\mathbb{M} B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-) \pi^{\pm}$ $\mathbf{\mathscr{O}} B^{\pm} \to (\rho(770)^0 \to \pi^+ \pi^-) K^{\pm}$ $M B^{\pm} \to (K^*(892)^0 \to K^+\pi^-) \pi^{\pm}$ $\mathbb{M} B^{\pm} \rightarrow (K^*(892)^0 \rightarrow K^+\pi^-) K^{\pm}$ $\mathcal{O} B^{\pm} \to (\phi(1020) \to K^+K^-) K^{\pm}$

vector A_{CP}

Given this approximation the A_{CP} can be obtained from the S_{\perp}

$B^{\pm} \rightarrow \rho(770)^0 \pi^{\pm}$

LHCb previous results: Phys. Rev. Lett. 124(2020) 031801 $\square A_{CP} = (+0.7 \pm 1.1 \pm 1.6)\%$

Lucas Falcão

CP violation measurements in three-body charmless **B** decays

$B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

Selected region $0.49 < m_{\pi^+\pi^-(low)}^2 < 0.72$ $5 < m_{\pi^+\pi^-(high)}^2 < 21$

Other channels results

Lucas Falcão

PRD.108.012013(2023)

$B^{\pm} \rightarrow \rho(770)^0 K^{\pm}$

Lucas Falcão

$$A_{CP} = (+15.0 \pm 1.9_{stat} \pm$$

10

 1_{syst}) %

12

14

 $B^{\pm} \rightarrow \rho(770)^0 K^{\pm}$

 $p_2^+ = 9.7 \pm 0.3$ $p_2^- = 13.0 \pm 0.3$

18

16

 7.9σ

20

 χ^2_+ /ndf = 0.8 χ^2_- /ndf = 0.6

Final results for all channels:

Decay channel	This work	Previous measurements
$B^{\pm} \rightarrow (ho(770)^0 \rightarrow \pi^+\pi^-)\pi^{\pm}$	$-0.004 \pm 0.017 \pm 0.009$	$+0.007\pm0.011\pm0.016$ (LHCb)
$B^{\pm} \rightarrow (\rho(770)^0 \rightarrow \pi^+\pi^-)K^{\pm}$	$+0.150 \pm 0.019 \pm 0.011$	$+0.44 \pm 0.10 \pm 0.04$ (BABAR) $+0.30 \pm 0.11 \pm 0.02$ (Belle)
$B^{\pm} \rightarrow (K^*(892)^0 \rightarrow K^{\pm}\pi^{\mp})\pi^{\pm}$	$-0.015 \pm 0.021 \pm 0.012$	$+0.032 \pm 0.052 \pm 0.011$ (BABAR) $-0.149 \pm 0.064 \pm 0.020$ (Belle)
$B^{\pm} \rightarrow (K^*(892)^0 \rightarrow K^{\pm}\pi^{\mp})K^{\pm}$	$+0.007\pm 0.054\pm 0.032$	$+0.123\pm0.087\pm0.045$ (LHCb)
$B^{\pm} \rightarrow (\phi(1020) \rightarrow K^+K^-)K^{\pm}$	$+0.004\pm 0.014\pm 0.007$	$+0.128\pm0.044\pm0.013$ (BABAR)

Conclusion

$$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$$

Measurements of CP asymmetries in charmless three-body: $\mathbf{M} B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$ (First Observation) $\mathbf{M} B^{\pm} \to K^{\pm} K^{+} K^{-}$ (First Observation) $\mathbf{M} B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$ (Confirmation) $\mathbf{M} B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}$ (No asymmetry) The phase space reveals non-uniform asymmetries Indication of CP violation involving the $\pi\pi \leftrightarrow KK$ rescattering Indication of CP violation involving the $\chi_{c0}(1P)$ resonance

$B \rightarrow PV$

Solution Measurements of CP asymmetries in $B \rightarrow PV$: **Markov** New method to measure CPV $\overrightarrow{\Omega} B^{\pm} \rightarrow \rho(770) K^{\pm}$ (First Observation) All other channels (No asymmetry)

CP violation measurements in three-body charmless B decays

Lucas Falcão

Gracias!!!

Thank you!!!

Obrigado!!!

CP violation measurements in three-body charmless B decays

Backup

The Detector

Lucas Falcão

CP violation measurements in three-body charmless B decays

Trigger requirements

- Hardware trigger The event is selected if the transverse energy is larger than 3.5 GeV for at least one hadron from the $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$
- Software trigger Requires a two-, three- or four-track vertex with a significant displacement from any PV

Stripping requirements

Variables	Selection cuts
Tracks P _T	> 0.1 GeV/c
Tracks P	> 1.5 GeV/c
Tracks $IP\chi^2$	> 1
Tracks $\chi^2/n.d.f.$	< 3
Tracks GhostProb	< 0.5
Sum of P _T of tracks	> 4.5 GeV/c
Sum of P of tracks	> 20. GeV/c
Sum of $IP\chi^2$ of tracks	> 500
P_T of the highest- P_T track	> 1.5 GeV/c
Maximum DOCA	< 0.2 mm
B^{\pm} candidate M_{KKK}	5.05 - 6.30 GeV/
B^{\pm} candidate M_{KKK}^{COR}	$4-7 \text{ GeV/c}^2$
B^{\pm} candidate IP χ^2	< 10
B^{\pm} candidate P_{T}	> 1. GeV/c
Distance from SV to any PV	> 3 mm
Secondary Vertex χ^2	< 12
B^{\pm} candidate $\cos(\theta)$	> 0.99998
B^{\pm} Flight Distance χ^2	> 500

Systematic uncertainties

$$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$$

Divided into three groups Potential mismodelling of the invariant mass distribution Phase-space efficiency corrections Source c **Production asymmetry** Signal m

Peaking Peaking Combin Efficience Product Total

$B \rightarrow PV$

Divided into three groups Variation of fit regions Variations of resonance mass window Change of the projected variable

of uncertainty	$K^{\pm}\pi^{+}\pi^{-}$	$K^{\pm}K^{+}K^{-}$	$\pi^{\pm}\pi^{+}\pi^{-}$	$\pi^{\pm}K^{+}K^{-}$
nodel	0.0004	0.0007	0.0000	0.0001
background fraction	0.0005	0.0010	0.0002	0.0004
background asymmetry	0.0022	0.0001	0.0005	0.0007
atorial model	0.0002	0.0005	0.0015	0.0025
ey correction	0.0014	0.0016	0.0018	0.0019
ion asymmetry	0.0011	0.0011	0.0011	0.0011
	0.0029	0.0024	0.0027	0.0035

Efficiency correction

- The acceptance maps are generated by data weighted Monte Carlo subsamples of: ĕ Year: The acceptance maps are separated by year to account for differences between the periods of
 - data taking.
 - IT Polarity: Separated by each magnet polarity to take into account the left-right asymmetry of the detector.
 - **V** Trigger configuration: Subsamples of TOS and TISnotTOS to account for possible differences between data and MC with respect to the L0Hadron_TOS efficiency.
 - \square Charge: Separated by B^+ and B^- candidates

PID corrections performed using the PIDCalib package using bands of kinematic variables

Partial width difference

Relation between CPV of the different decay modes **Mased on U-spin symmetry**

$$\Delta\Gamma(B^{\pm}\to\pi^{\pm}\pi^{+}\pi^{-})=-\Delta\Gamma(B^{\pm}\to K^{\pm}K^{+}K^{-})$$

$$\Delta\Gamma(B^{\pm}\to\pi^{\pm}K^{+}K^{-})=-\Delta\Gamma(B^{\pm}\to K^{\pm}\pi^{+}\pi^{-})$$

The above relations can be rewritten like:

$$\Delta\Gamma(B^{\pm} \to \pi^{\pm}K^{+}K^{-}) = \frac{A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-})\mathcal{B}(B^{\pm} \to \pi^{\pm}K^{+}K^{-})}{\tau(B^{\pm})}$$

Using the measures values of the integrated asymmetry

$$\frac{A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) \mathcal{B}(B^{\pm} \to \pi^{\pm} K^{+} K^{-})}{A_{CP}(B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}) \mathcal{B}(B^{\pm} \to K^{\pm} \pi^{+} \pi^{-})} = -0.9$$

$$\frac{A_{CP}(B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) \mathcal{B}(B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-})}{A_{CP}(B^{\pm} \to K^{\pm} K^{+} K^{-}) \mathcal{B}(B^{\pm} \to K^{\pm} K^{+} K^{-})} = -1.0$$

CP violation measurements in three-body charmless **B** decays

Lucas Falcão

 2 ± 0.18

 0.06 ± 0.08

Both results are consistent with -1 as predicted by the U-spin symmetry

